Rail Maintenance Central Asia: Infrastructure

DE-Consult

TRACECA - Project Rail Maintenance Central Asia: Infrastructure (TNREG 9310) Chapter 2.1.3.

Traffic Census on the Pontoon Bridge near Chardzhev (Turkmenistan) July and August 1996

Report about the Results

- DRAFT -

Deutsche Eisenbahn-Consulting GmbH Regional Department Europe/ CIS/Mediterranean

Berlin, February 1997

- DRAFT -

2.1.3 Traffic via the Pontoon Road Bridge over the Amudarya river near Chardzhev

2.1.3.1 Used Methodology and Approach of Data Collection

The available data about the traffic over the pontoon bridge of different sources have different levels. This data was not suitable for the analysis and the forecast.

There is no information about the structure of the road traffic by types, origin/destination etc.

Therefore two types have been prepared and carried out in order to get data concerning the present road traffic via the pontoon bridge.

The counting includes information about all vehicles using the pontoon bridge. The interview survey of selected vehicles should give special information about the structure of the road traffic.

The counting and survey were realised within three days during July and August 1996 (29th - 31st July and 7th - 9th August). In result of the counting it was found out, that the 29th July was not representative, because the traffic on this day was lower than the traffic on all following days. The reason is not known, therefore the counting results of this day had to be eliminated.

The counting of vehicles using the bridge was carried out from 6 to 20 hours. All vehicles crossing the bridge were counted by types and by direction. The total number of vehicles in 24 hours was estimated based on results of 14 hours counting.

The variations of the daily traffic over the bridge in the counting period was normal, the variations are between +2.9 % in maximum and -1.0 % in minimum concerning an average day.

The interview survey of selected vehicles was carried out on the base of the following key points:

- Use of a questionnaire (see annex 1)
- Survey of a selected number of vehicles (each fifth vehicle in general)

The counting and survey were realised with the support of two local subcontractors: the Lebapskoye Road Operation Authority and the Turkmendorproject Institute, Chardzhev branch office.

Altogether the interview survey of vehicles using the pontoon bridge have been concentrated to 1769 vehicles (on six days in total), of them:

- -vehicles of freight traffic 984, of them:
 - 236 2-axle vehicles
 - 138 3-axle vehicles
 - 620 >3 axle vehicles
- -vehicles of passenger traffic 785, of them:
 - 658 passenger cars
 - 127 buses

This means, 18.9 % of all vehicles crossing the pontoon bridge in the a.m. period have been surveyed.

2.1.3.2 Total Road Traffic Volume via the Pontoon Bridge

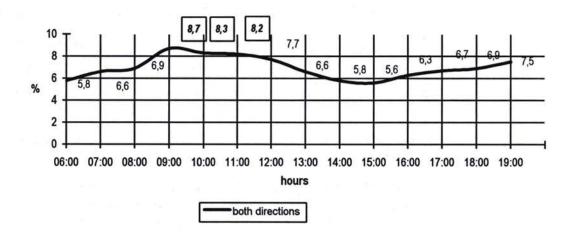
Volume by Number of Vehicles

The road traffic via the pontoon bridge amounts to 2,023 vehicles on an average day in both directions (24 hours). The variation of the observed traffic volume by directions Chardzhev-Farap and Farap-Chardzhev is approximately the same.

Passenger cars have the biggest proportion in the number of vehicles using the bridge, their proportion is 54 % in average. The proportion of freight traffic vehicles amounts to 34 %, among them trucks >3 axles to 15 %.

The traffic flows by passenger cars, busses and 3-axle trucks had the same volume in both directions approximately. Concerning the trucks having >3 axles it was observed a bigger volume in the direction to North than to South.

Table 2-14: Average Daily Traffic by Vehicle Type (ADT) via the Pontoon Bridge


Vehi	cle Туре	ADT by	Direction	ADT total	Structure of Traffi Volume by Vehicle Type (in %)	
		Chardzhev-Farap	Farap-Chardzhev	Both directions		
Utility (2-axle)	< 2 tonne payload 1.9-2.6 tonne GVW*)	119	146	265	13	
Truck (3 -axle)	2 - < 8 tonne payload 5.8 - < 8 tonne GVW	57	61	115	6	
Truck (>3 axle)	> 8 tonne payload 17.8 - 38.0 tonne GVW	184	116	300	15	
Passenger car		568	536	1,105	54	
Bus		39	40	79	4	
Other vehicles types		87	69	156	8	
Total		1,055	969	2,023	100	

*)GVW Gross vehicle weight

Source: Survey by DE-Consult in co-operation with Lebapskoye Road Operation Authority and Turkmendorproject Institute, Chardzhev branch office

The variation of the number of vehicles is not so high during the day between 6 and 20.00 hours. There is a peak between 9 and 12 a.m., but the variation is not so high in general. In the night the traffic volume is obviously lower than by day.

The following diagram shows the variation in the traffic volume per day on average:

Volume of Traffic by Axles

The number and the structure of vehicles do not characterise the loading of the bridge exactly. Therefore the number of axles per average day was calculated.

Table 2-15: Average Daily Traffic by Axles and Standard-Axle Vehicles via the Pontoon Bridge

Vehicle Type	Number of Axles (in general)	12000	f Axles by ction	Number of Axles in Total	Structure of Traffic Volume by Axles (in %	
		Chardzhev- Farap	Farap- Chardzhev	Both directions		
Utility (2-axle)	2	238	292	530	11	
Truck (3 -axle)	3	171	183	354	7	
Truck (>3 axle)	5	921	580	1,501	31	
Passenger car	2	1,137	1,072	2,209	46	
Bus	2	78	80	158	3	
Other vehicles types	2	174	138	312	6	
Total		2,719	2,346	5,066	100	

Source: Calculation by DE-Consult

Referring to the number of axles it has to be mentioned that the proportion of freight traffic vehicles amounts to 49 % and is little higher than the proportion of passenger cars.

The modal split between freight and passenger traffic by axles sums up to 49 % freight traffic: 49 % passenger traffic (including busses).

2.1.3.3 Structure of the Traffic via the Pontoon Bridge 1

Freight Traffic

The international traffic amounted to two third of the total road freight traffic via the bridge (68 %), of them 24 % export and import of Turkmenistan and 76 % transit from/to other countries through Turkmenistan.

The proportion of the domestic traffic via the pontoon bridge amounted to 32 %, of them 89 % traffic within the Velayat Lebap and 11 % of traffic between Velayat Lebap and other regions in Turkmenistan.

This basic structure shows, that the pontoon bridge has an enormous importance for the international traffic especially for the transit traffic through Turkmenistan.

The transit traffic has the following main connections:

Iran - Uzbekistan both directions 34.6 % proportion of the total transit traffic

Turkey - Uzbekistan both directions 32.5 % proportion of the total transit traffic

Iran - Kazakstan both directions 16.0 % proportion of the total transit traffic

Two third of the vehicles running over the bridge have their origin or destination in Uzbekistan.

¹ The source of this data is the survey by DE-Consult in co-operation with Lebapskoye Road Operation Authority and Turkmendorproject Institute, Chardzhev branch office.

Table 2-16 provides an overview about the main regional structure of the freight road traffic via the pontoon bridge.

Table 2-16: Structure of Road Freight Traffic via the Pontoon Bridge

Connection	Proportion of the total road freight traffic (%)				
Domestic traffic of them:	32.1	100.0			
within the Velayat Lebap		88.8			
with other regions in Turkmenistan		11.2			
External trade of Turkmenistan (export/import)	16.1				
Transit traffic among them:	51.8	100.0			
Iran - Uzbekistan		19.3			
Uzbekistan - Iran		15.3			
Turkey - Uzbekistan		13.1			
Uzbekistan - Turkey		19.4			
Iran - Kazakstan		7.8			
Kazakstan - Iran		6.2			
Kazakstan - Afghanistan		2.0			
Uzbekistan - Afghanistan		2.4			
Turkey - Afghanistan		2.4			
Total	100.0				

Source: Survey by DE-Consult in co-operation with Lebapskoye Road Operation Authority and Turkmendorproject Institute, Chardzhev branch office

The above mentioned main transit connections amounted to 90 % of the total transit via the bridge.

The description of the structure by commodity on the base of the results of the survey is difficult, because not all data is representative. Therefore the conclusion is concentrated on relevant and representative data.

Domestic Traffic

Regarding the number of vehicles via the bridge the structure by commodity in the domestic freight traffic shows the following situation:

The traffic within the Velayat Lebap includes distribution transports with small vehicles in general. Transported main commodities were building materials, food and beverages as well as other consumer goods. The same situation is existing in the domestic traffic between all other Turkmenian Velayats (without Velayat Lebap).

External Trade of Turkmenistan by Road via the Border Crossing Farap
This assessment is based on the customs statistics of 1995 and 1996 (January-June),
because the results of the survey are not representative.

The volume transported via Farap border crossing and via the pontoon bridge is very low. The proportion of external trade traffic by road via Farap amounted to 0.4 % in the total export and 0.3 % in the total import. In the first six months of 1996 there was an enormous decline in external trade transports by road via Farap.

The international traffic between Turkmenistan and other countries by car and by bus is characterised by a relevant proportion of traffic between Turkmenistan and its neighbouring country Uzbekistan. The reasons are strong relations between the people on both sides of the Turkmenian-Uzbek border. In the Velayat Lebap there live about 106,000 Uzbek, this means 11.6 % of the population live in the Velayat Lebap².

Therefore, there are a important traffic between Turkmenistan and Uzbekistan, especially from/to the region of Bukhara (see table 2-20).

Table 2-20: Passenger Traffic between Turkmenistan and Uzbekistan by Road via the Pontoon Bridge

Kind of traffic	Proportion of the	total passenger traffic (in %)	International traffic = 100 %		
	Traffic by car	Traffic by bus	Traffic by car	Traffic by bus	
International traffic from/to Turkmenistan abroad	23.0	53.0	100.0	100.0	
among them: from/to Uzbekistan, region of Bukhara from/to other regions of Uzbekistan			64.8 28.5	51.5 32.2	

Source: Survey by DE-Consult in co-operation with Lebapskoye Road Operation Authority and Turkmendorproject Institute, Chardzhev branch office

The average occupancy rate in the passenger traffic by car amounted to 1.17 persons per car, but various figures in the different kinds of passenger traffic have been observed:

Table 2-21: Occupancy Rates in the Passenger Traffic by Car via the Pontoon Bridge

Kind of traffic	Occupancy rate (persons / passenger car)	
Total	1.17	
of them:		
Domestic traffic	Domestic traffic within the Velayat Lebap	1.13
	Domestic traffic between Velayat Lebap and other Velayats	1.12
	Domestic traffic between other Velayats via the bridge	1.0
International traffic	Total	1.44
of them:	Traffic with origin or destination in Turkmenistan	1.16
	Transit traffic	2.0

Source: Survey by DE-Consult in co-operation with Lebapskoye Road Operation Authority and Turkmendorproject Institute, Chardzhev branch office

The structure of the passenger car traffic via the bridge by travel purposes shows the following situation:

- The domestic traffic within the Velayat Lebap is characterised by the fact that the proportion of the travel purpose "holidays and visit of relatives" amounts to one third approximately.
 - The travel purpose "business" has a proportion of 20 % only.
- The domestic traffic between the Velayat Lebap and other Turkmen regions as well as between other Turkmenian regions themselves shows a high proportion of business trips.
- Business trips made by car are the main purpose in all parts of the international traffic.

² Source: Results of the Population Counting in Turkmenistan, Goskomstat Ashgabat 1996

Table 2-17: Export and Import Traffic by Road via Farap Border Crossing

	Volume (in 1000 t)	among them:
Export 1995	14,300	9,020 tons cotton to Pakistan
Export Jan-June of 1996	480	
Import 1995	6,350	2,260 tons from Uzbekistan 1,910 tons from Israel 1,380 tons from Russia
Import Jan-June of 1996	950	

Source: Customs Statistic of Turkmenistan 1995 and 1996

The results of the survey in the field of transit traffic are not completely representative, but the following structure could be assumed:

- The main commodities were food and agricultural products (about one third).
- The transport of high-value goods like equipment's, machines etc. has an enormous importance in the transit traffic by road via the pontoon bridge.
- Thirdly there the transport of various consumer goods is of some importance.

The structure by vehicle types shows a high proportion of small vehicles in the domestic traffic and a high proportion of trucks in the international traffic. In the transit traffic the proportion of trucks 17.8 - 39.0 t GVW sum up to over 90 % (table 2-18).

Table 2-18: Structure of Road Freight Traffic via the Pontoon Bridge by Vehicle Type

Kind of traffic	Structure by vehicle type in %							
	Utility 2 axles	Truck 3 axles	Truck > 3 axles	Total				
Domestic traffic within the Velayat Lebap	70.1	19.1	10.8	100				
Domestic traffic between other Turkmen regions	45.7	40.0	14.3	100				
Export/ import traffic	21.5	20.3	58.2	100				
Transit traffic	0.8	7.8	91.4	100				

Source: Survey by DE-Consult in co-operation with Lebapskoye Road Operation Authority and Turkmendorproject Institute, Chardzhev branch office

The structure of the vehicles by country of the registration shows a high proportion of vehicles registered in Turkmenistan (38 %), in Iran (32 %) and in Turkey (19 %). Vehicles registered in Kazakstan had a proportion of 3.5 %. The proportion of vehicles with registration in Uzbekistan amounted to 5.5 %.

Passenger Traffic

The passenger traffic via the bridge includes traffic by car and by bus. There is not a public short-distance traffic between Farap and Chardzhev. Therefore the bus traffic running via the bridge is private traffic over short distances (traffic of enterprises etc.) as well as private and public traffic via long distances.

The following table gives an overview the regional structure of the passenger traffic.

Table 2-19: Regional Structure of Passenger Traffic by Car and by Bus via the Pontoon Bridge

Kind of traffic		Structure	(in %)
		Traffic by car	Traffic by bus
Total		100.0	100.0
of them:			
Domestic traffic	Total	77.0	47.0
	of them:		
	Domestic traffic within the Velayat Lebap	69.5	40.9
	Domestic traffic between Velayat Lebap and other	6.6	6.1
	Velayats		1
	Domestic traffic between other Velayats via the bridge	0.9	
International traffic	Total	23.0	53.0
	of them:		
	Traffic with origin in Turkmenistan	13.1	9.6
	Traffic with destination in Turkmenistan	6.2	17.4
	Transit traffic	3.7	26.1
	among them:		
	Uzbekistan - Iran	1.1	10.5
	Iran - Uzbekistan	0.6	5.2

Source: Survey by DE-Consult in co-operation with Lebapskoye Road Operation Authority and Turkmendorproject Institute, Chardzhev branch office

In comparison with the freight traffic the passenger traffic via the bridge has another regional structure. The regional structure of passenger traffic by car is characterised by the following situation:

- The modal split between domestic and international traffic amounted to 77.0 %: 23.0 %.
- 90.3 % of the domestic traffic is traffic within the Velayat Lebap, especially traffic between Chardzhev on the one hand and Farap Etrap res. Pristan one the other hand and 8.7 % domestic traffic between other Turkmenian Velayat via the bridge.
- 83.9 % of international passenger traffic by road is traffic from/to Turkmenistan;
 16.1 % transit traffic through Turkmenistan.

The bus traffic shows another regional structure:

- The modal split between domestic and international traffic amounted to 47.0 %: 53.0 %.
- 87.0 % of the domestic traffic is traffic within the Velayat Lebap, especially traffic between Chardzhev on the one hand and Farap Etrap res. Pristan one the other hand, and 13 % are domestic traffic between other Turkmenian Velayats via the bridge.
- The international traffic by bus has the following structure: 50.9 % traffic from/to Turkmenistan abroad 49.9 % transit traffic
- More than 60 % of the transit traffic by bus are traffic flows between Iran and Uzbekistan.

Table 2-22: Structure of Passenger Car Traffic by Travel Purposes via the Pontoon Bridge

Kind of traffic		Structure by travel purposes (in %)						
		Business	Holidays, visit of relatives	Private	Other			
Domestic traffic	Domestic traffic within the Velayat Lebap	20.2	34.1	24.1	21.6			
	Domestic traffic between Velayat Lebap and other Velayats	49.0	34.0	10.6	6.4			
	Domestic traffic between other Velayats via the bridge	66.7	22.2		11.1			
International traffic	Traffic with origin or destination in Turkmenistan	48.7	26.0	20.9	4.4			
	Transit traffic	61.7	20.0	8.3	10.0			

Source: Survey by DE-Consult in co-operation with Lebapskoye Road Operation Authority and Turkmendorproject Institute, Chardzhev branch office

DE-Consult

0

Ques	suoni	iaire	ior S	urvej	oru	sers	Of ti	ie Po	onto	on Bri	age ne	ear C	narazne	ev	
date	of the	day		time			100000	et No:		name o					
Quest	ion 1: 0	directio	n (to b	e cros	sed wh	ere ar	polical	ble)							
		v - Far			T				p - C	hardzhe	V				
								on the second						100	
Quest	ion 2: 1	ype of			cross						104	70.000	Tori	Loc	
21 nea	vy goo	as our-	22 heav	vy goo icles/ s				ods vel		/ with d semi-	24 pass cars	enger	25 busse	es 2t	other vehicles
	eelers			elers		trailer		X 111100	10 un	-	l suis				romoio
Ouget	ion 3. /	country	of roa	ietrati	on of th	a voh	icle (t	o he c		d where	annlica	hle: co	untry/are	٠)٠	
	rkmeni		Of reg		zakhsta		icie (t		zbek		аррпса		er countrie		IS
				02110				1000		- Cturi		0 1 0 111	or countries		
35 Ira	n			36 Afg	ghanista	an		37 T	urkey	/		38 oth	er countrie	es	
Quest	ion 4: 6	origin a	nd des	tinatio	n of th	e tran	snort	(to be	cros	sed whe	re annlic	able: c	ountry/ar	ea).	
41		n/ coun			/II OI tII	- Lian	sport	43			/country			Caj.	7
411	Iran		,	g				431	Iran		, ,				1
412		nistan						432		hanistan					1
413	Turke					_		433	Tur						4
414		chstan cistan, C	Ohlast F	Rukhar	a	+		434	_	akhstan	Ohlast R	ukhara			-
416		cistan, c			ш	$\overline{}$		436	Uzbekistan, Oblast Bukhara Uzbekistan, other regions					-	
417	Turkn	nenistar	n, city o	f Ashg				437							
418		nenistar				\perp		438							
419		nenistar Turkme						439	39 Turkmenistan, Velayat Balkanskij (e.g. Turkmenbashi, Nebit-Dag)			1			
420		nenistar				\rightarrow		440 Turkmenistan, Velayat Maryiskij			-				
	(e.g. l	Mary, B	ajrama	li)				10.00	(e.g. Mary, Bajramali)						
421					hkhovu	skij		441	441 Turkmenistan, Velayat Dashkhovuskij						
422		nenistar dzhev)	n, Velay	at Leb	apskij			442	442 Turkmenistan, Velayat Lebapskij						
423		countrie	es of CI	S		\dashv	_	443	(Chardzhev) other countries of CIS				-		
424		countrie						444							
		67376C	22. 22.		on therefore		-1 160 06						,		
													here appl		
Food, produ	agricu	ltural			roducts fin etc.			nateria cement		Chemic	al produc		Machines, ndustrial s	vehicle	es,
Produ	CLS		Petroi	, parai	iiii etc.			quipm		lerunze		1.55	inished an		ned
						etc.	_		2000	M2707		l F	products		157.22
51			52			53				54		- 5	55		_
Iron a	nd stee	al .	Cone	umer g	onde	oth	er prod	ducte				-			_
produ				produ		000	er pro	uucis							
56			57	N#.V		58									
Quest	ion 6		61		veight o	of the lo	oad (in	ı t)			1				
		•••						· 100			- 2 2				
		with pas											plicable)	1	
Dusin						sons (s es etc.)		ing, visit	other	5					
71			72			73					74]	
]	
				9	0.4	2000					_				
Quest	on 8	100			81	num	nper of	persor	ns pe	r vehicle					

TRACECA - MODULE C - WS 3200

CHARDZHEV BRIDGE

3. INSPECTION REPORT ON BRIDGE AND POTENTIAL FOR REFURBISHMENT

CONTENTS:

3 INSPECTION REPORT ON BRIDGE AND POTENTIAL FOR RE	EFURBISHMENT.3
3.1 GENERAL	3
3.1.1 Situation and Technical Characteristic of the Bridge	3
3.1.2 Visit of Expert	4
3.1.3 Investigation programme	
3.1.4 List of Abbreviations	
3.2 PRESENT BRIDGE SITUATION	
3.2.1 State of the Steel Structure	
3.2.2 State Description of the Piers	
3.3 DOCUMENTATION	
3.3.1 Photo Documentation	
3.3.2 Recordings of Expert	
3.3.3 Proof Load Measurement	
3.3.4 Statical Computation of the Bridge Main Structure	12
3.4 FORMER INSPECTIONS	
3.4.1 Results of Inspection of Bridge	
3.5 FEASIBILITY OF LIFE EXTENSION	
3.5.1 Short time activities	13
3.5.2 Long time activities	
3.6 APPENDICES	

3 INSPECTION REPORT ON BRIDGE AND POTENTIAL FOR REFURBISHMENT

3.1 GENERAL

3.1.1 Situation and Technical Characteristic of the Bridge

The bridge across the Amu-Darya River was built in the years 1898 to 1901 to connect the town of Chardzhev on the western with Farab on the eastern bank. 25 truss girder bridges (numbered 1 to 25) with span of 66,136 m are situated on double concrete filled tube piers. All truss spans are of the same type: straight lower chords, upper chords with variable system height, so the axis of the upper chord is between 7,506 and 9,144 m above the lower chord axis. The ascending and descending diagonals and verticals connect the gusset plates in distance of 4,724 m. The axis of the main girders have a distance of 5,537 m. Between the main girder lower chords cross girders are arranged every 4,724 m which carry longitudinal girders 1,829 m distant. Upper and lower wind bracings made of angles and also lurch bracing grant horizontal stiffness (photo F2-13 to -15, F6-18). All connections are riveted except such parts which are added later to replace

damaged parts and which are bolted (photo F1-23).

The upper chord is built up by double wall riveted hat plate profile and the lower chord by a reversed hat profile like the upper chord. The diagonals and verticals are either formed as a double-T-section laced by flat iron or as laced plate+angle section. The end frame diagonals are of a hat section. See photo F1-31 to -37, F6-20 to -24. Cross girders and longitudinal girders are made as riveted plate girders with angle flanges, the end cross girders strengthened by additional cover plates.

The bearings are of cast iron. The fixed bearings are on the western pier whereas the movable bearings are on the eastern pier of each span. See photo F1-17 to -20. A runway with rails to push a little lorry is arranged outside the main girders on upstream side (photo F1-30, F6-21, -26 and -29).

The bridge deck between the rails is covered with a wooden floor, partly of corrugated iron.

An inspection car is intended to run on I-beam rails below the lower flange but the resistance due to friction is heavy enough to baffle movement other than by force of ten workers.

Some of the spans carry high voltage current masts on their upper flange (see photo F1-08 and F6-33).

The spans are resting on piers made of concrete filled double tubes with boxes between (photo F2-20, -24, F4-34 to -37).

On both banks of the river access spans of plate girders of 11,89 m length are situated.

Schematic drawings with numbering are following in the Annex A.

3.1.2 Visit of Expert

The expert who was concerned to give a comprehensive judgement of the bridge state is an experienced specialist on steel bridges with long time residence in foreign countries. He has documented the general and detail state by written and spoken reports, by sketches and photographs. The summary of his report is given below.

3.1.3 Investigation programme

It was intended to select the spans which are evidently in the worst state. Such spans should be investigated thoroughly, but the remaining only if conspicuous.

The spans which are therefore selected are

- span 0
- span 3
- span 13
- span 15
- span 23

Some other spans also were checked.

The expert also directed a proof loading of one bridge span and documented the deflection of the structure. The measurement results are checked with program and hand computation.

3.1.4 List of Abbreviations

The following abbreviations are introduced to simplify the report text:

Abbr.	Full text	Abbr.	Full text	
MG	Main girder	UC	Upper chord	
CG	Cross girder	LC	Lower chord	
LG	Longitudinal girder	UF	Upper flange	
US	Upstream	LF	Lower flange	
DS	Downstream	HV	High voltage	

3.2 PRESENT BRIDGE SITUATION

3.2.1 State of the Steel Structure

(See also Annex B and D)

The steel structure was designed with enough safety to sustain the design lodas during a long time period (surely more than 100 years). But the material quality (which could not be judged by the expert) is probably and the workmanship of the execution and the corrosion damages are surely causing reasons for the present state documented in the following description and in the Annexes B and D.

Some particular problems are stated by the expert:

The structure shows some weakness if a train passes the bridge which is caused by weak connections (loose rivets, rust swelling etc.). This weakness produces movement in the connections of the elements which will cause further defects as new cracks.

Many of rivets which are found defective were replaced by bolts which are probably high strength friction grip (HSFG) bolts. In normal riveted structures the plate surfaces in the connection itself are coated with minimum 1 layer of painting. If a HSFG bolt is applied on a structure painted between the force bearing surfaces the friction coefficient is not more than 0,20 instead of 0,40 to 0,45 on normal raw (sandblasted) surface. Therefor it is very probably that these replacing HSFG bolts can not take over the full load of the former rivets if they are not executed as fitting HSFG bolts which are machined and brought into a carefully reamed hole (tolerance hole to shaft 0,01 to 0,02 mm). If not so which can be assumed the remaining rivets have to take over a considerable overload or the whole joint is very weak if load passes over. This can again produce new cracks.

A certain form of strengthening shown on photo F1-13 with round bar welded to a strengthening plate. Such elements are extremely fatigue crack endangered as abrupt cross section changes and poor welding (executed on site) provoke damage especially if they situated near the load carrying track. Strengthening in such form should be avoided.

A very serious problem is the corrosion on the structure and the corrosion protection as executed at present. It is described below that the special cement used for this purpose is not suited. Correct sandblasting and 4 paint coatings of an approved quality should be applied if further defects should be avoided.

3.2.2 State Description of the Piers

The piers are made of steel plate tubes which are riveted together and stiffened by bracings. The inside is filled with non-reinforced concrete.

Generally the piers show signs of heavy corrosion outside as well as inside the plate shell. One pier was hit by a ship and the cladding is deformed. Other piers have large leaks where water can intrude into the inside. It is impossible to say how the state of the piers is below the water level or inside the steel tube. The report of the local experts refer that a large amount of stone packing was brought in at some piers but the stones are now swept away and can be found scattered in the river bed downstream.

There is a great danger that during high water period erosion and deepening of the bottom of river occurs as the protecting stone packing does not exist.

3.3 DOCUMENTATION

3.3.1 Photo Documentation

The photograph documentation is appended to the report in Annex B.

3.3.2 Recordings of Expert

3.3.2.1 General

The general state of the bridge steel structure can be expressed by the following: A lot of defects have been detected by the expert but are also documented by inspection reports handed over to the expert.

Apart from this the structure is designed save and its stress level would be low enough to carry also heavier loads if there were not the defects and detail faults which are described in the following. These faults can cause fatigue cracks which cannot be detected due to the special cement coating which is applied at present. The following report does not give a complete enumeration of all defects but shows characteristic features of the structure.

3.3.2.2 Concerning all Spans

In all spans the edge stiffening angles of cross frame connecting main girders and upper bracing are cut off to give more clearance for bigger lorries (photo F6-18, -19). Not in all cases this angle is built in again, and where so, there are considerable excentricities in the connections.

Many of the connecting angles between cross girder and LC are cracked and therefor strengthened by additional angles, where the rivets are replaced by bolts.

The connection between cross girder and longitudinal girder is strengthened in a more modern way by (indeed bad) welding with round bars going through holes in the cross girder web (photo F1-12, -13).

80% of the bolts to fasten the rails are loose.

3.3.2.3 Bearings

The bearings are made of grey cast iron and are in good state. The movable bearing is situated on the Farab side of every span except the acces spans (see below). It consists of an upper part which rests on a round steel whipper. This is embedded in a central body with flat lower plane running over 6 rollers. The rollers go over a lower plate which is situated on the piers header stone. The fixed bearings (on the Chardzhou side) are rocker bearings. The upper part of every bearing is fixed with 4 bolts on the LC of the MG, the lower plate is secured against shearing with 4 vertical round bars (recorded by the local experts, but not visible).

The 2 mm thick lead inlay between upper plate and LC of MG is squeezed out (which is a common and well known fact of lead inlay) - see photo F1-17.

The lower plates of the bearings are resting on 8 mm thick lead which below is lined with a special concrete under pressure which was executed newly (photo F1-20).

3.3.2.4 High Voltage Cantilevers

These cantilevers are connected to the UC in span 1 between 2' and 3', in the other spans between 12' and 13' by replacing the rivets with bolts, but some of the bolts are missing and not again replaced (photo F1-23).

3.3.2.5 Spans

Span 0 (photo F8-24)

This span is a plate girder as described above. The main girder are in good condition (except the painting). The legs of the LC bracing angles are deformed and bent (photo F2-13 to -15).

Bearings:

All 4 bearings are defective (photo F2-10). This is perhaps a consequence of the situation of the bearings: the fixed bearings are arranged diagonally - at Chardzhou end DS and on Farab side US, the movable bearings accordingly opposite. The subsequent constraint could have caused the damages.

A2: Concrete block with cracks and chipping. Vertical gab 4 mm.

A1: (photo F8-26, -33, -34). Concrete block is loose on the stone. No cracks.

B2: (photo F2-10, F9-05, -06). Lower plate deviates 5 mm from bridge axis direction. Vertical movement 2 mm. The lower bearing plate has a crack with 13 mm gap throughout. The concrete base is not fixed on the stone.

B1: (photo F8-25, -27 to -31). The concrete below the bearings sounds to be hollow if hit by hammer (photo F8-31, HOHL = hollow). Cracks in the header stone of the piers are filled up with grout but not treated further (photo F2-12). Lower bearing plate deviates 5 mm from bridge axis direction. Concrete base not fixed on the stone.

Span 3

This span is over land. The general aspect shows a well designed bridge with the characteristics of a riveted structure.

The piers are riveted double steel tubes with angle bracings between the shafts. They are filled with concrete, but at the surface there seems to be poor cement portion. No signs of reinforcement. The bracing and the tube walls are heavily corroded - estimated 1 mm thickness loss. The box between the tube piles is full with water and also heavily corroded (see example on photo F2-24).

The lower plates of the bearings are inserted in the stone of the pile heads and grouted (photo F1-20). No shear connectors are visible and it is not known by the local experts if there are any. The lead inlay is sqeezed out (photo F1-17, F2-05). At the end nodes of the main girder there are some bad formed rivet heads. At the verticals and diagonals some rivets were removed and replaced with bolts. No loose rivets or bolts could be detected but in some cases the rivet holes are not filled again (photo F1-10). A similar method was used to fix the HV cantilever at the UC. There are also holes which are not filled (photo F1-23).

Strengthening of some structure elements (as the connection longitudinal to cross girder) is executed with angles which are bolted or with welded bars and gussets (photo F1-11 to -13). Such action evidently should improve defects as warping or torsion of angles or plates (photo F1-11).

Some deformations (curvature) of bracings between LC elements seem to come from the erection time (photo F1.15, -16).

On DS side angle cantilevers which carried the footway are cut off and replaced with bolted and welded consoles (photo F1-14).

In many cases the angle which carries the inspection car rails are cracked or deformed heavily (photo F2-07, F6-13, -14 of other span). The supporting angle of the telephone console is loose also.

Very frequent signs of corrosion can be seen (except of the UC which is in good state but coating is full of cracks): photo F1-09, -10, -26 to -29, F2-01. The present painting consists of a special grout of unknown consistency and is full of cracks and not very resistible. Behind this coating very often the steel is rusty. Sometimes the special grout or cement is used to fill wide gaps (photo F1-22).

Span 13

This span shows similar characteristics as the other spans.

Some loose and outstanding rivets have been detected (photo F6-04, -16).

At some diagonals deformation of bracing flats can be seen (photo F6-21, -22).

LC heavy pitting (localized corrosion) due to acid influence is shown on photo F6-11, -12. The suspension angle of the inspection rail is broken (photo F6-13, -14).

Corrosion is visible at various locations especially below rail level (photo F6-01, -02, -03, -05, -06, -07, -09, -11, -12, -15, -17, -32), but also at the diagonals where narrow gaps filled with special cement exist (photo F6-20, -24, -27, -30, -37). Rust has puffed up the angle legs due to volume extension and effects proceeding of corrosion (photo F6-32, -34, -35).

Span 15

Every gusset plate of LC shows signs of rust wherever the above mentioned special grout was applied. At LC gusset plate of vertical 11-11' a plate was riveted in which is to 60% bitten away probably due to attack of (battery?)acid or similar. Also from one rivet only remained 14 mm of the shaft and the lower head. The verticals and diagonals do not have loose rivets as some of them were replaced by bolts. The total span is just in state of unrusting but only the surface of the coating is treated as no proper tools are available (no sandblasting, no wire brushes - only little pick axe). Lower bracing near movable bearing has 3 mm deep rust flaw. The end cross girder at the fixed bearing is not strengthened and is deformed.

Span 23

The inspection car cannot be used as the rails (U 200) are bent due to ships collisions but not repaired (in the spans 22, 23, 24 and 25). The support angles of the inspection rails are deformed (photo F4-16). As the rope winch cannot be used up to ten workmen have to move the car.

The cross girder connection to LC DS and also US shows warping (photo F4-07 to -09, -11, -12). The bracing between the longitudinal girders has loose connections, corroded, some of the rivets are missing (photo F4-10). Rivets are also missing at the end girder (photo F4-12, -23).

The LC is totally spoiled with birds excrements and other waste (photo F4-15, -26, -27).

Corrosion exists at every vertical to LC connection and at cross girders and diaphragms (photo F4-24, -25).

Strengthening of various elements of the structure is made similar to other spans (photo F4-05, -06, -08, -11, -12, -14, -28, -29, -31).

The structure above the rail level is in good condition, no loose rivets detected, riveting was executed very well.

Span 26 (short span on FARAB side, photo F7-25 to -27, F8-22)

No faults on steel structure are visible, all rivets are firm. Painting is thin, some minor rust spots.

Bearings:

B2: (photo F7-12, -13, -14, -17, -18, -20). The concrete block has cracks and chippings. Between upper and lower bearing plate a 7 mm lining plate is inserted, which can be easily moved. Vertical free motion is possible (photo F7-20). The concrete base has no connection to the stone below.

B1: (photo F7-22, -24). Lower plate is cracked. Vertical free motion together with concrete base 1,5 mm. Water channel behind the bearings has to be cleaned. Distortion of upper bearing plate is evident.

A1: (photo F7-30, -32, F8-00). Should be fixed bearing but concrete base moves on the stone (vertical movement 2 mm). Concrete base shows chippings and cracks so that the reinforcement is visible.

A2: (photo F7-31). Vertical movement is 4 mm if train passes by. Cracks in the stone.

3.3.2.6 Piers

It is reported that the real state of the piers deviates from the state documented in the original design drawings. Some reinforcing plates or bars could be arranged inside the steel tubes which are not drawn. It is also unknown if the damages and holes which are now strengthened and closed by plates have caused some deterioration inside the piers.

It was also reported that a great amount of rubble stone was brought at the foot of some piers in the main stream which has to be renewed again as it was swept away. The present state is not known exactly. The water depth diagramm over the years shows very much changes which indicates enduring changes of the situation. Also the main stream changes between the piers.

Plate cladding of the piers 15 mm thick is on some spots totally bitten due to corrosion and there strengthened with plates (photo F4-32 to -34). Pier 24 was hit by a ship which damaged and bent the cladding (photo F4-36, -37).

Where not otherwise stated the following can be said:

All piers are of the same construction type: Riveted steel tubes with bracings, filled with concrete, no reinforcement. Correct position of the bearings is centric on the top of the pier, grouting in good state. Stone good, no cracks.

Pier 1:

Bottom: Rests on land, made of concrete with stone cladding.

Pier 2:

Bottom: Rests in stagnant water. Corrosion signs inside and outside.

Pier 3 (photo F8-35, -36):

Same as for pier 2.

Pier 4 (photo F10-03, -04:

Bottom: Access from Ind possible, with water ditch 2 m. Corrosion signs inside and outside. Inside water filled.

Pier 5 (photo F10-06):

Bottom: Staircase to land, sand surrounding (no water ditch). Heavy corrosion signs inside and outside.

Pier 6 (photo F9-01):

Same as for pier 5.

Pier 7 (photo F10-09, -10, -12, -13):

Bottom: Access possible, water ditch. Heavy corrosion signs inside and outside. Concrete filling defective.

Pier 8 (photo F10-14, -15):

Bottom: Access possible, water ditch. Heavy corrosion signs inside and outside.

Pier 9:

Bottom: Access possible, dry ditch. Heavy corrosion signs inside and outside.

Pier 10

Bottom: Access possible, sand surrounding. Heavy corrosion signs inside and outside.

Pier 11:

Same as for pier 10.

Pier 12 (photo F10-17, -18):

Bottom: Access possible, sand surrounding. On Chardzhev side a 2,5 m buckling approx. 120 mm deep. Heavy corrosion signs inside and outside.

Pier 13 (photo F10-21):

Bottom: Access possible, water ditch. Heavy corrosion signs inside and outside.

Pier 14:

Same as for pier 13.

Pier 15:

Same as for pier 13.

Pier 16:

Same as for pier 13.

Pier 17:

Same as for pier 13.

Pier 18:

Bottom: Access possible, sand surrounding. Heavy corrosion signs inside and outside.

Pier 19:

Top: Bearing for 320 mm excentric from pier center. Grouting renewed and in good state. No defects of stone.

Bottom: Access possible, water ditch. Very heavy corrosion inside and outside. Hole at water level 2,5 m long (photo F10-22, -23).

Pier 20:

Same as for pier 13.

Pier 21 (photo F10-24):

Same as for pier 13.

Pier 22:

Bottom: Access not possible, pier rests in running water. Heavy corrosion signs inside and outside.

Pier 23 (photo F8-11 to -13):

Bottom: Acces with boat, corrosion defects.

Pier 24 (photo F4-36, -37, F8-06 to -09, F8-15, -16):

Bottom: Access with boat, pier rests in running water. Pier was hit by ship, heavy defects with buckling and bent parts. Corrosion inside and outside.

Pier 25 (photo F4-32 to -34, F8-01 to -03):

Bottom: Access with boat. Corrosion signs. Welded patches on various places. As plates are not weldable the welding is faulty.

Pier 26:

Pier on land, made of stone.

3.3.3 Proof Load Measurement

The proof loading was arranged at span No. 1 on 1996-09-11 at 09:30. Length of the span 66,1 m.

Initial measurement

at point 0

1399 mm

at point 7

1350 mm

at point 14

1384 mm

Temperature:

air

36° C

structure

27° C

Loading:

1. Two locomotives:

length 33 m, total mass 276 metric tons

in centric position of span 1

2. Four locomotives:

length 66 m, total mass 552 metric tons

over total span 1

Measurement:

without locomotives:

left MG

1987 mm

right MG

1987 mm

with 2 locomotives

left MG

2015 mm

right MG

2015 mm

Deflection therefor 28 mm

2. without locomotives

right MG

1971 mm

with 4 locomotives

right MG

2009 mm

Deflection therefor 38 mm

Longitudinal movement of the bridge end:

Measured between movable bearing of the span 1 to fixed bearing of span 2:

Distance

without load

1063 mm

1. With 2 loc. 1058 mm

movement 5 mm

2. With 4 loc.

1054 mm

movement 9 mm

A comparing computation is appended in Annex C.

3.3.4 Statical Computation of the Bridge Main Structure

See Annex C.

3.4 FORMER INSPECTIONS

3.4.1 Results of Inspection of Bridge

It can be stated that the bridge is under permanent supervision as it was reported to the expert and can be read also in the translated report.

This report refers in part I chapter 1.1 of the design and erection of the bridge, in chapter 1.2 of previous inspections which happened in 1928, 1947, 1952, 1959, 1966, 1980, 1984.

Part II refers of the results of the last very thorough inspection at 1990-91 by the experts of "Bridges and laboratory of bridges construction of MIIT".

In general the results of that inspection are similar with these obtained in the present time but are more extensive.

In Annex D some of the results of that investigation are summarised to have a quick overview for decisions.

3.5 FEASIBILITY OF LIFE EXTENSION

3.5.1 Short time activities

Within the remaining years but starting immediately the following actions should be executed:

The piers should be checked regularly at least after each high water situation. Especially the state of the piers which are situated in the main water flow have to be kept under supervision regarding inclination and vibration signs. The heavy leaks at water level should be repaired to prevent sudden break down in a low water level periode.

The structure should be checked regularly, as a minimum every 6 months to detect new cracks, loose bolts and rivets. Such checks should be concentrated to the connection longitudinal girders to cross girders, cross girders to main girder lower chord. The rivets and the straightness of horizontal bracing between the longitudinal girders should be observed. The rivets of lower chord in the region of point 5 to 9 and also the connection of diagonals 0 - 1' and 1' - 2 should be checked.

The axle loads should not be increased but better decreased as the number of cracks and loose rivets detected during previous inspection is a caution signal. As the expert stated at site the trains should be divided in parts with less loading of each span - this has the same background.

The corrosion situation of the bridge is also alarming. Corrosion flaws are serious starting points of fatigue cracks, and as the structure is very carefully enwrapped in the above mentioned special cement envelope which is absolutely intransparent there is a high grade of danger of undetected cracks. A thorough protective treatment is anavoidable and should be done as soon as possible: total removing of the existing coating by means of carefully sandblasting (all other means are unsufficient) and subsequent within 24 hours applying of the first painting. Then three further paintings (including edge protection) should be brought up. Airless spray method has to be used as the design details of some elements show very narrow gaps which could not be protected otherways. Where some pocket holes or boxes exist dewatering borings should be executed to enable water flow.

3.5.2 Long time activities

Lifetime of bridge structures similarly designed could be more than 100 years as examples from Germany or other countries show but very carefully corrosion protection and regular inspection (which is done in this case) is postulated. It cannot be said how the results are when the bridge is sandblasted and the exact state of the structure is visible.

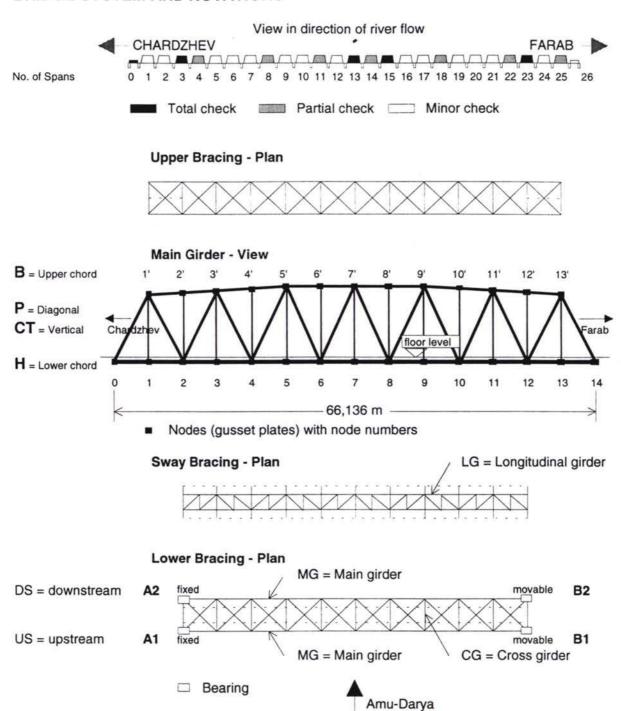
In knowledge of the above investigations the bridge should be replaced within the next 10 years if not renewed in a high degree. As it is known from similar structures renewing of riveted structures is very complicated and costly so in this case a total new structure would be cheaper. The renewing should enclose all connections between longitudinal and cross girders and to the main girder lower chord and the lower chord itself (due to its very heavy corrosion damages). This is the judgement without knowledge of the result of evidence after sandblasting of the structure. It is not recommended to use the existing piers to place a new structure on them without thorough investigations of the river bottom and of the state of steel plate tubes and inside concrete. There are strong suspicions that the load carrying capacity is very low due to water intrusions and corrosion effects.

3.6 APPENDICES

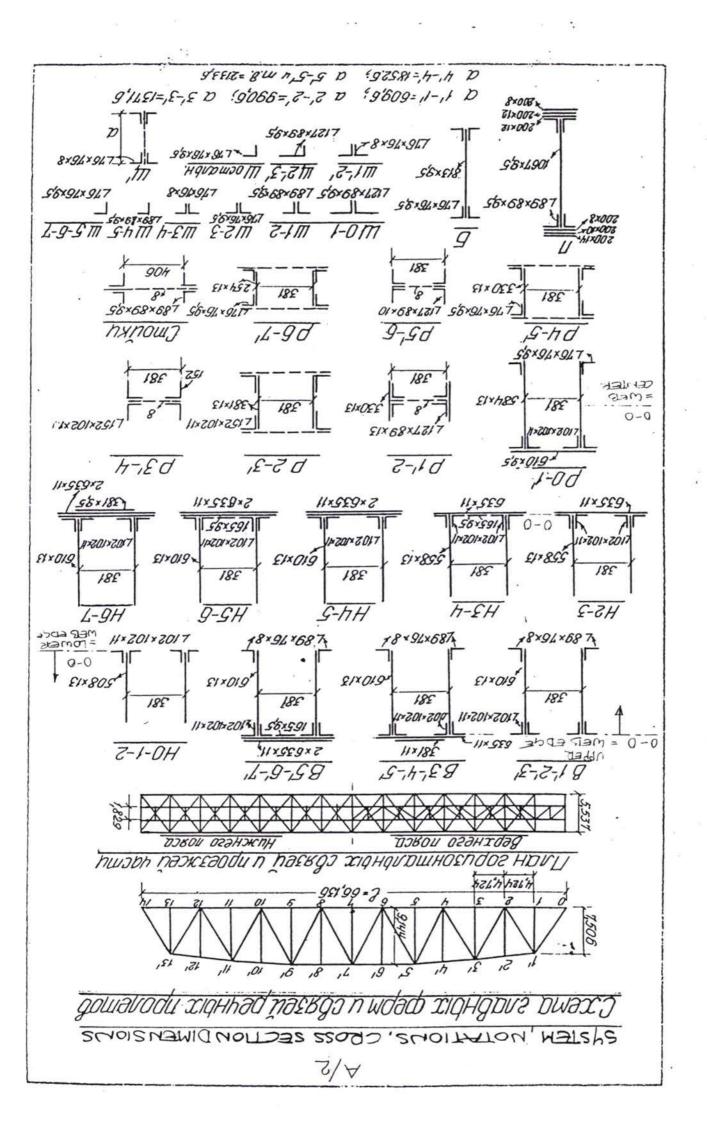
APPENDIX A - BRIDGE SYSTEM AND NOTATIONS

APPENDIX B - PHOTGRAPH DOCUMENTATION

APPENDIX C - CHECK COMPUTATION

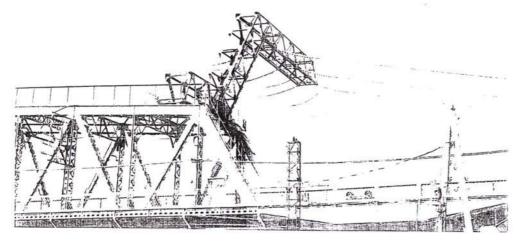

APPENDIX D - SUMMARY OF FORMER INSPECTIONS

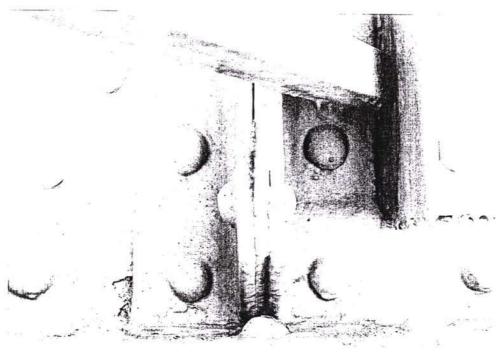
TRACECA - MODULE C - WS 3200


CHARDZHEV BRIDGE

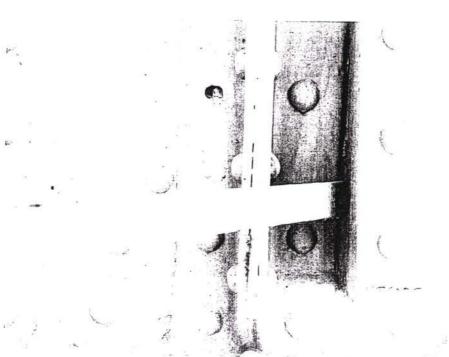
APPENDIX A BRIDGE SYSTEM AND NOTATIONS

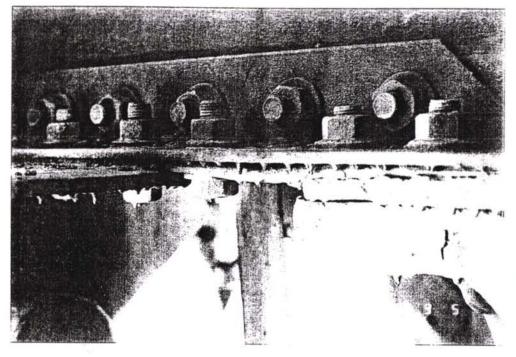
BRIDGE SYSTEM AND NOTATIONS

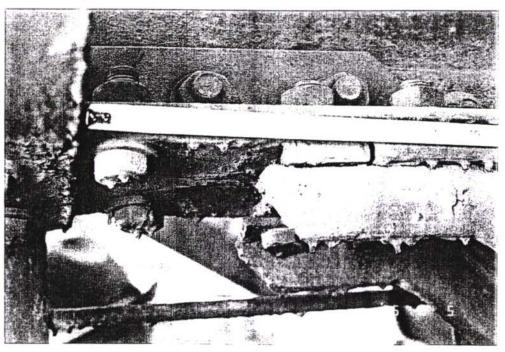

River Flow

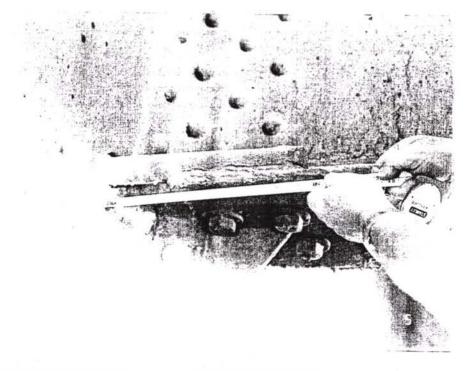

TRACECA - MODULE C - WS 3200

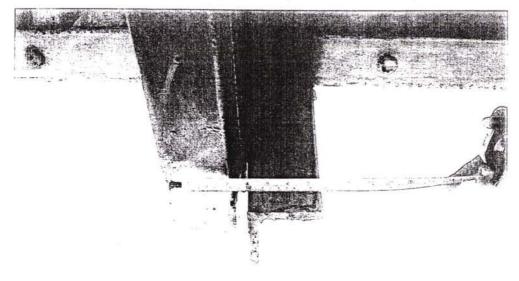
CHARDZHEV BRIDGE

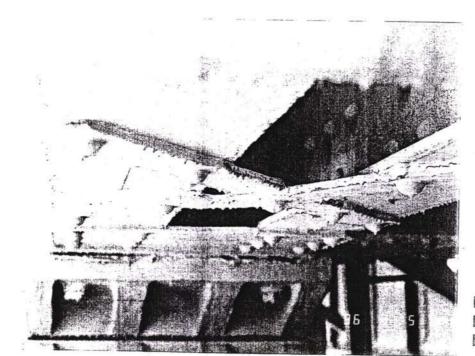

APPENDIX B PHOTOGRAPH DOCUMENTATION

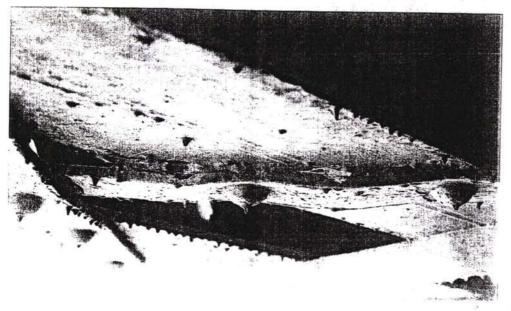

F1-08 Span 3 HV cantilever

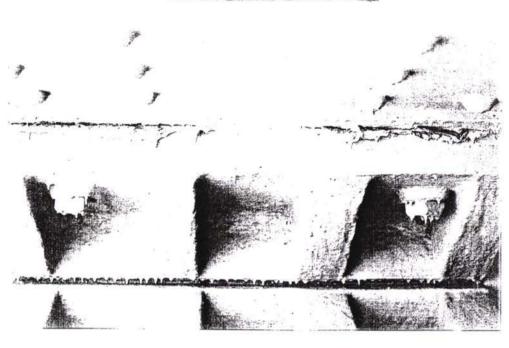

F1-09 Span 3 Cross girder corros.

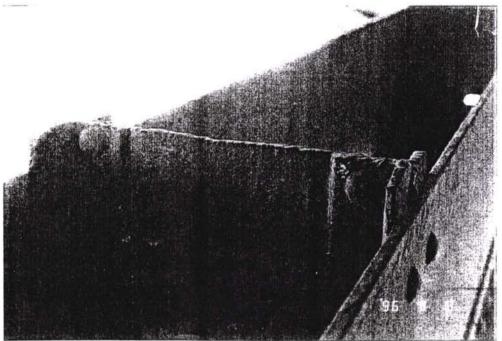

Boar 2 intes inte missing dura

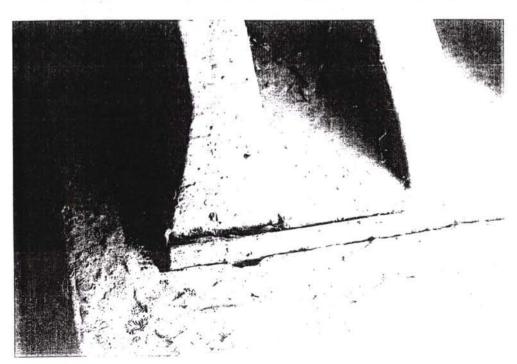

F1-11 Span 3 Cross girder strengthening, as per 80% of all cross girders

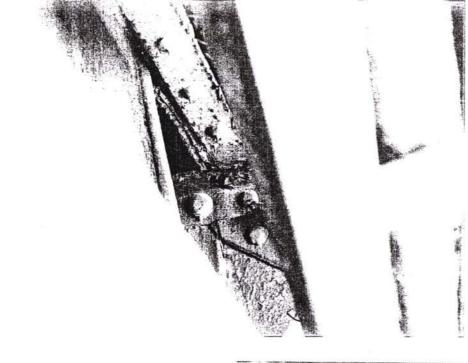

F1-12 Span 3 As F1-11, from below

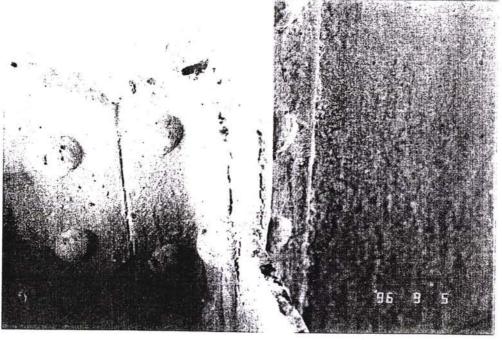

F1-13 Span 3 Longitudinal girden strength aming, cross girder perforated

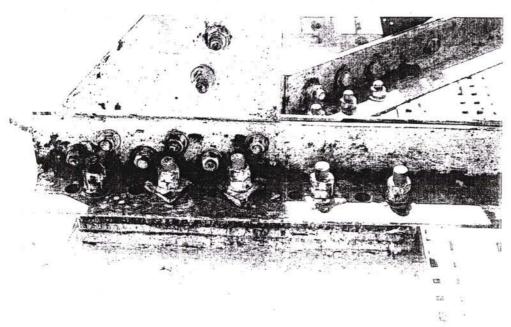

F1-14 Span 3 New runway cantilever girder bolted. otherwise welded


F1-15 Span 3 Deformed LC brackets

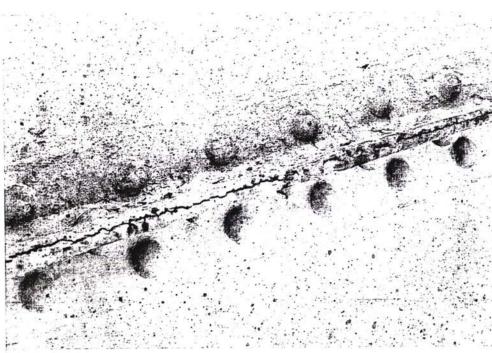

Spari. AFF - FISCOVEW

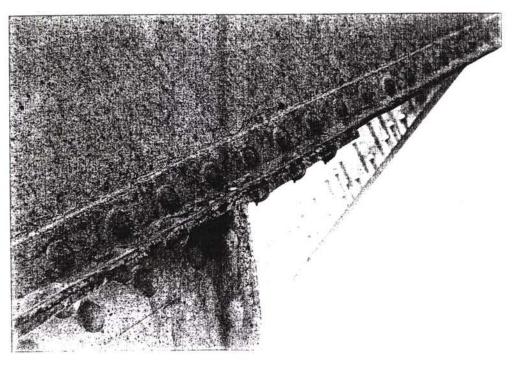

F1-17 Span 3 Fixed bearing with lead inlay, sqeezed

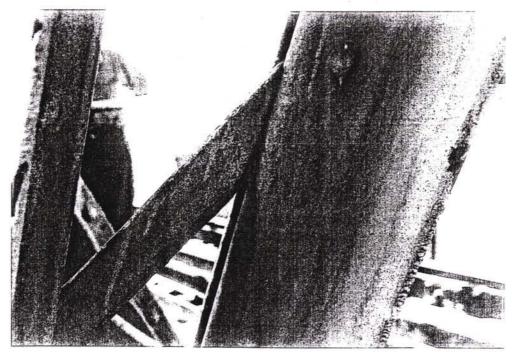

F1-18 Span 3 All runway cantilevers DS are cut off

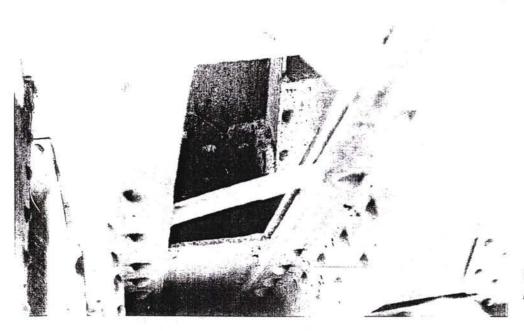

F1.20 Span 3 Pixed bearing lower can with fixing wedge

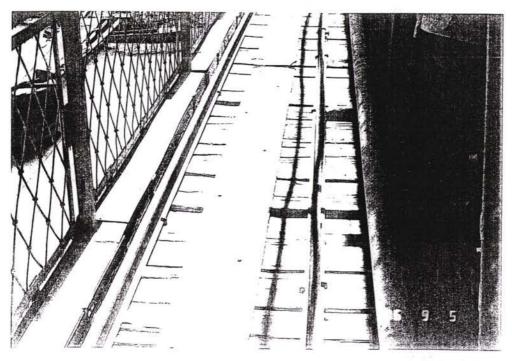
F1-21 Span 3 Corroded longitud, girder

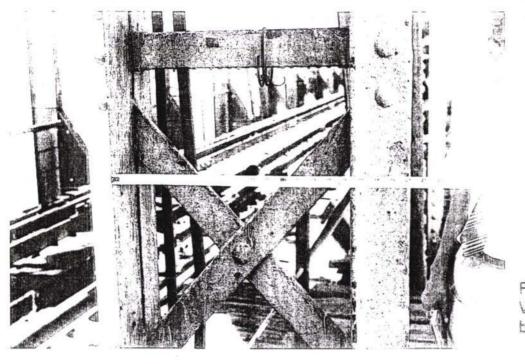

F1-22 Span 3 LC angle joint to cross girder filled up with spec.cement

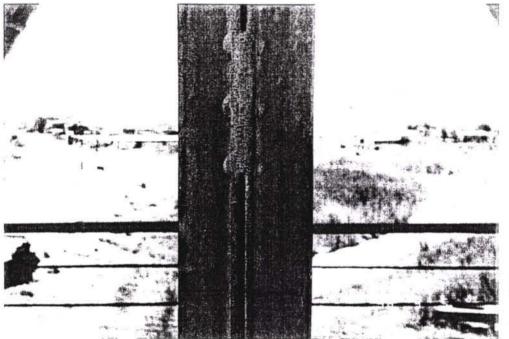

F1-23 Span 7 Foring 2 Harden cards fever arms

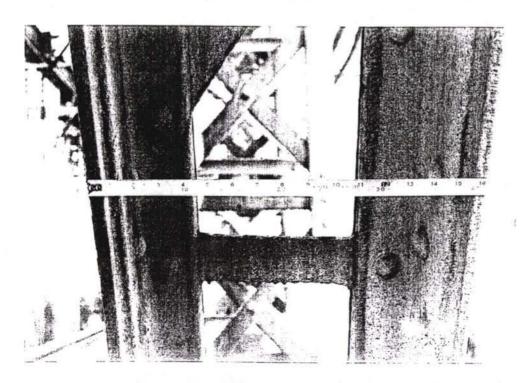

F1-25 Span 3 UC joint to cross bracing

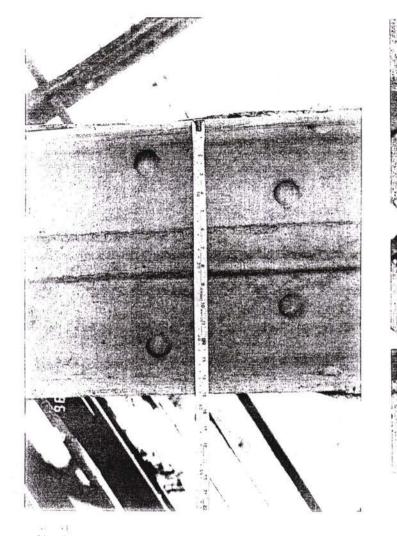

F1-26 Span 3 UC strengthening angle corrosion


P1-27 Span 3 UC strengthening angle corresion

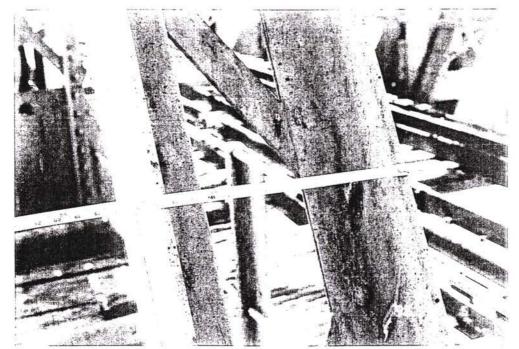

Span 3 F1-28 Corrosin at diagon.


F1-29 Span 3 As F1-28

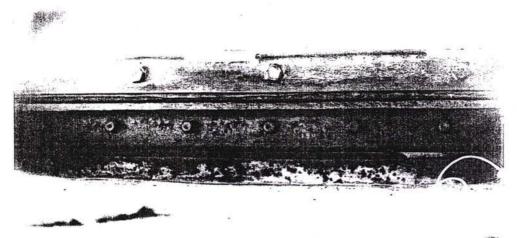

Fige Span 3 Burway with rails 'or war sport form


F1-31 Span 3 Vertical with bracing

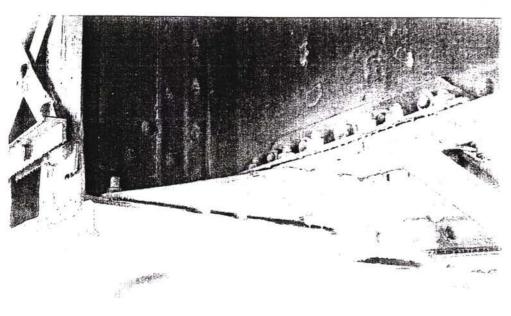
F1-32 Span 3 Vertical with cut off railing cantilever

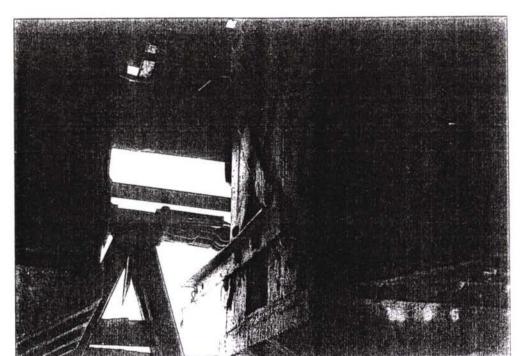


Etuss Spanis Diagonal

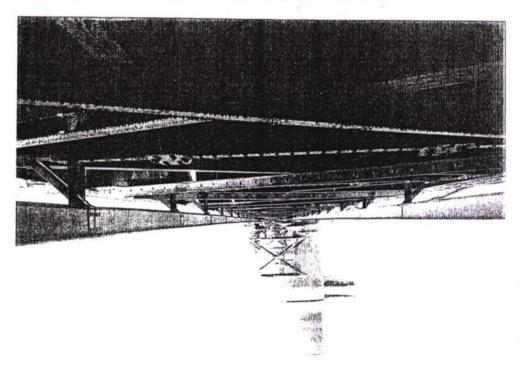


F1-35 Diagonal

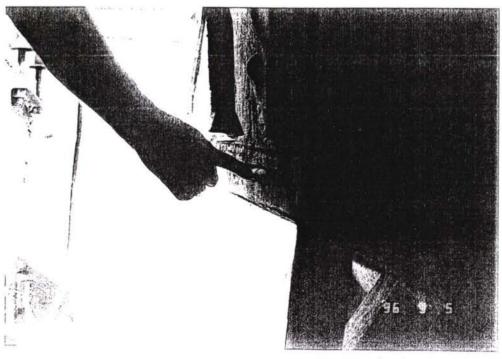

Span 3


F1-37 Span 3 Diagonal

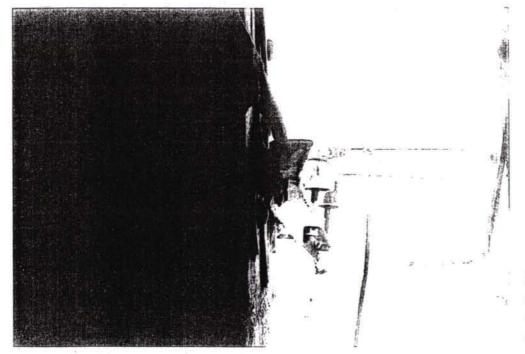
F2-01 Span 3 Movable bearing Lower part

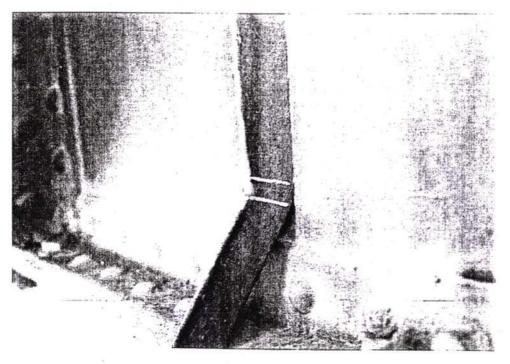


F2-02 Spand End woss girder al movable bearing

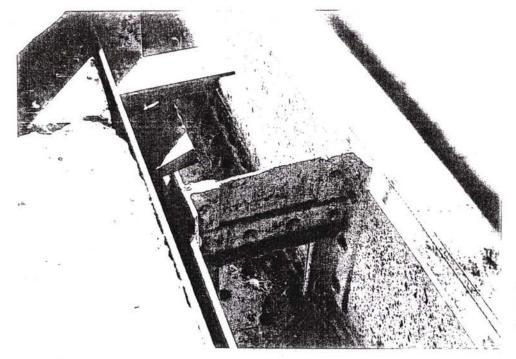


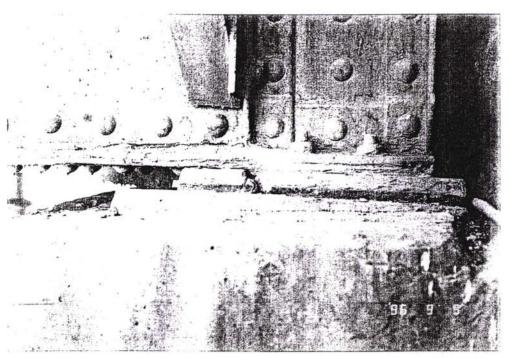
TRACECA - MODULE C 11 CHARDZHEV BRIDGE

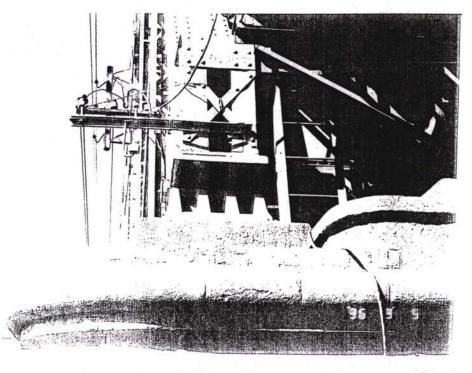

F2-03 Span 3 Bearing (flashlight defect)

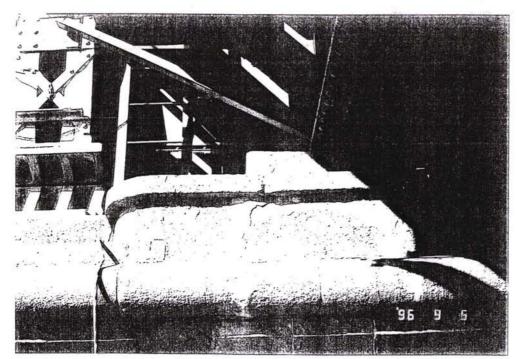

Span 3 F2-04 View from pier with rails for inspection car

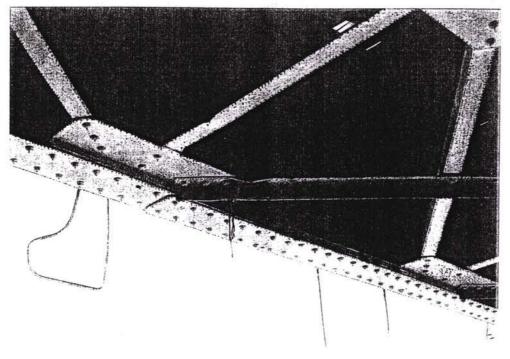
F2-0E Span S Besting with educezed lest in len

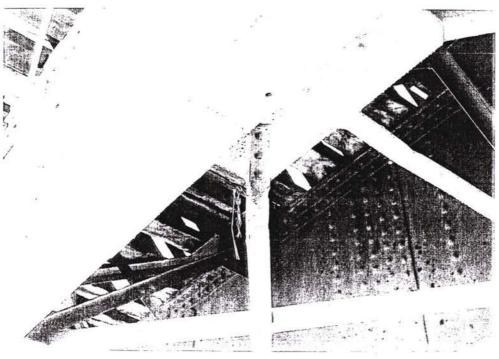

F2-06 Span 3 Angle for current conductors for ship signals

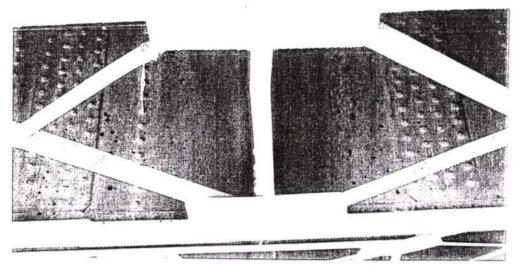

Span 3 F2-07 Cracked angle of inspection car rail

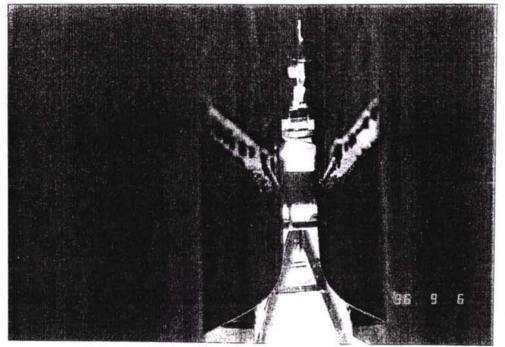

F2-08 Span 3 Loose support of felephone brecket. 280 12 77

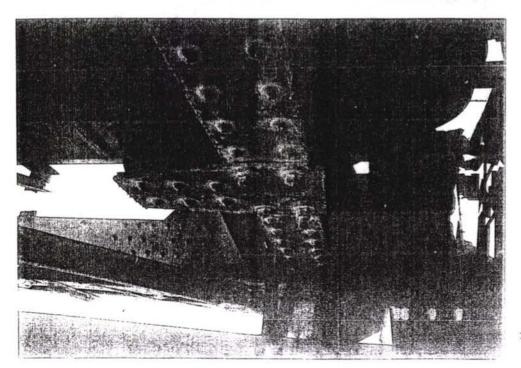

F2-09 Span 3 LC DS cut off footway cantilever


F2-10 Span 0 Bearing of plate girder 0 (land)

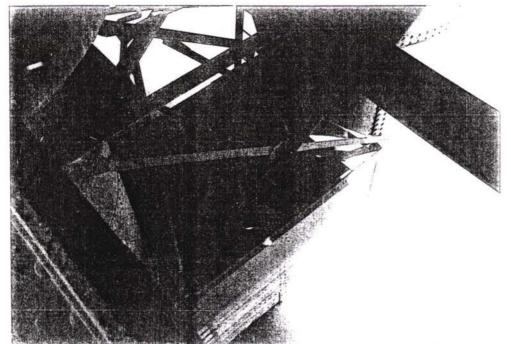

Span 1 Pixed treating of scar fig


F2-12 Span 0 Bearing DS of span 0, crack in the stone

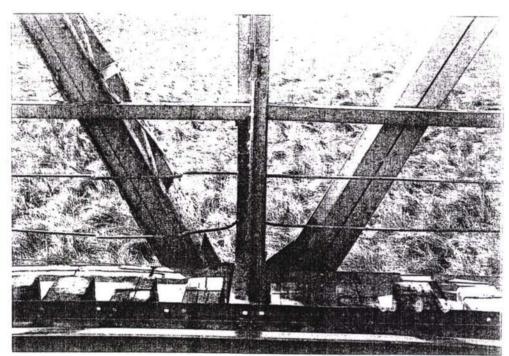

Span 0 F2-13 Deformed LC bracing angle

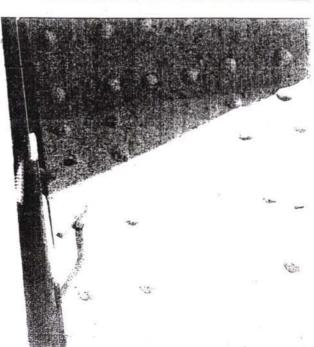

F2.47 Spanic it repire emple

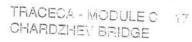
F2-15 Span 0 Deformed LC bracing angle



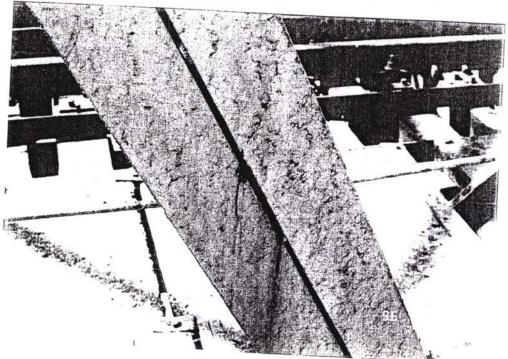
F2-16 Span 2 and Gap between Span 2 and 3

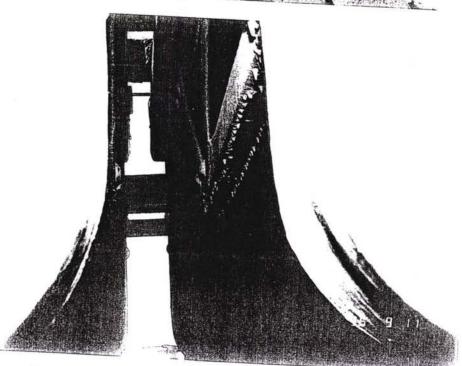




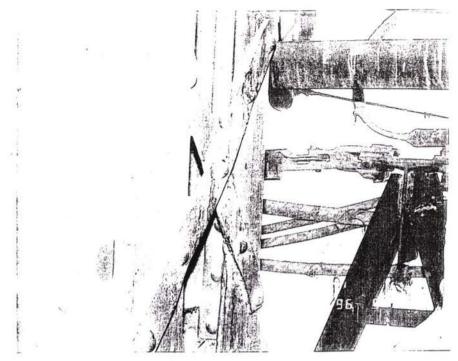

F2-24

F2-25



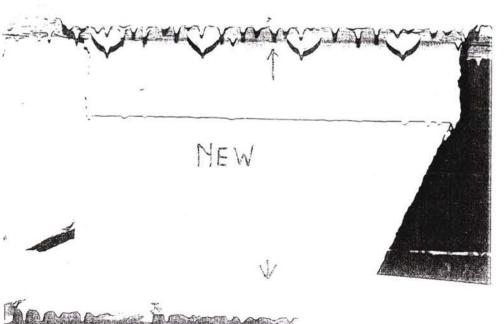


F2-27

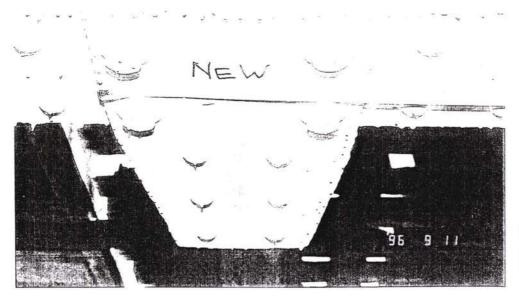


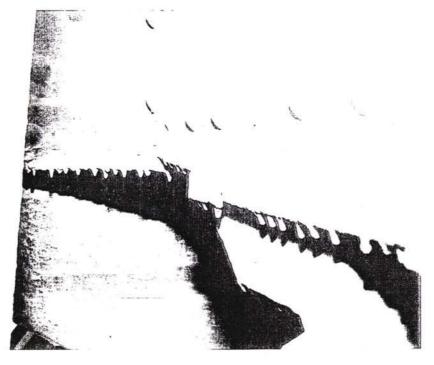
F3-01 Span 15 Corrosion signs

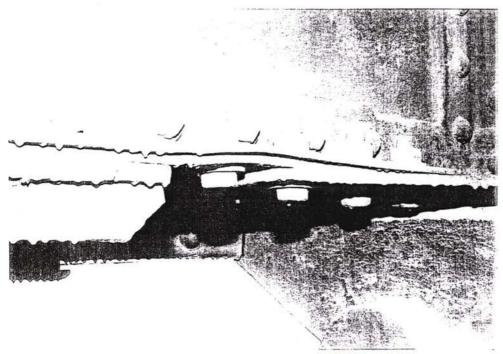
FA-(** Spet 28 Expansion pap with deformed transfer et

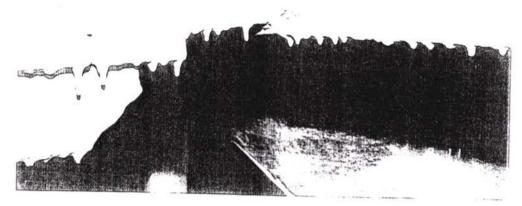


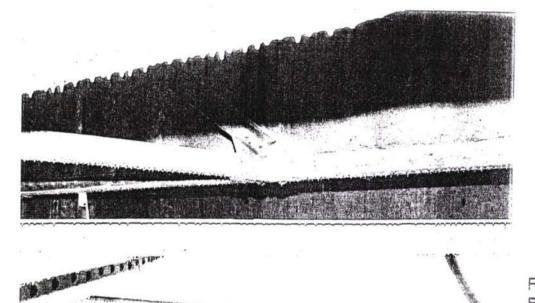
1

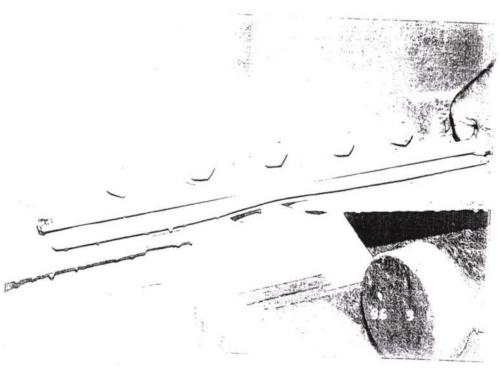

Span 23 F4-02 Deformed diagonal bracing

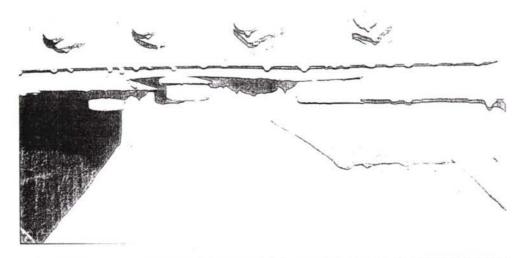

F4-03 Span 23 Bolt replaces rivet


Span 23 F4-05 hier angles at tengitudinal girder ti and be all statement.

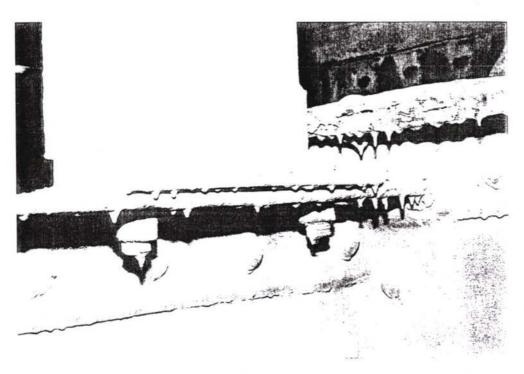

Span 23 F4-06 As F4-06, from below

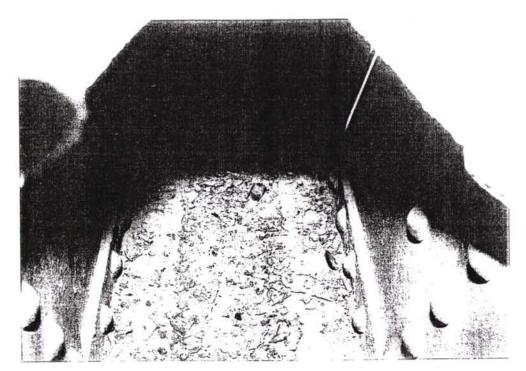

Span 23 F4-07 Cross diaphragm warping of lower flange

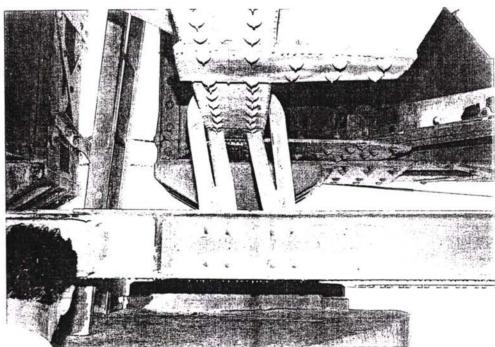

Spar 22 F. A. J. 18 1 g f 8 ...


Span 23 F4-09 As F4-07

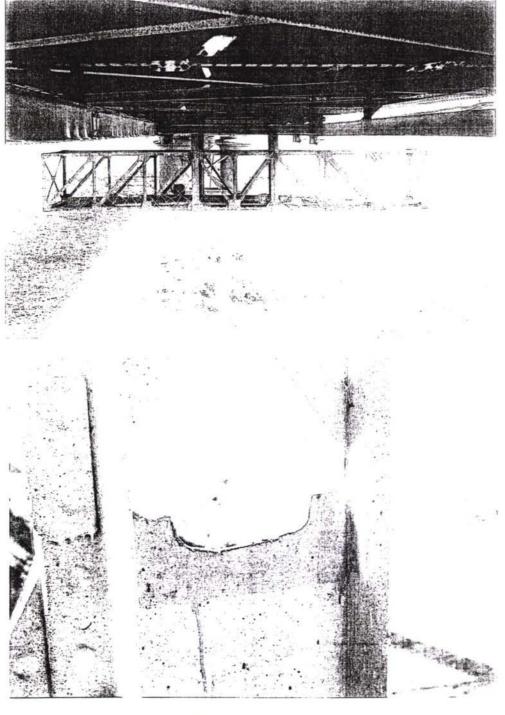
F4-10 Span 23 Bracing between longitudinal girders

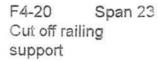

Span 23 ters disphragm warning despite of strandicaring

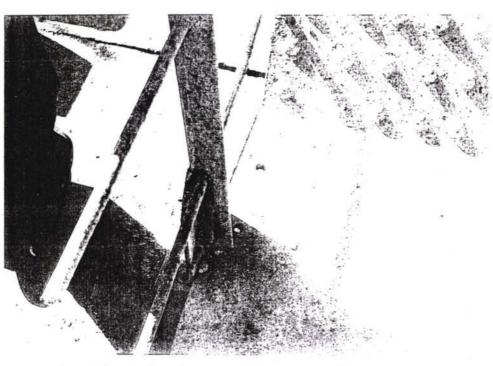

F4-12 Span 23 Strengthening of cross girder


F4-13 Span 23

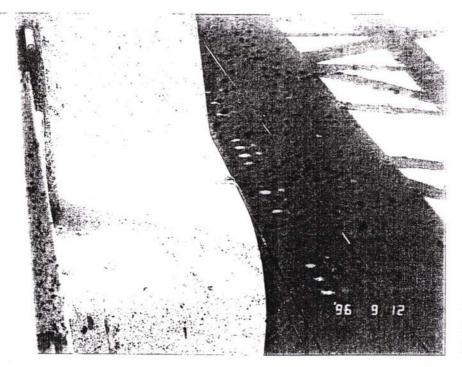
Span 23 Lomusian of longit. Project or segime:


F4-15 Span 23 Corrosion of LC

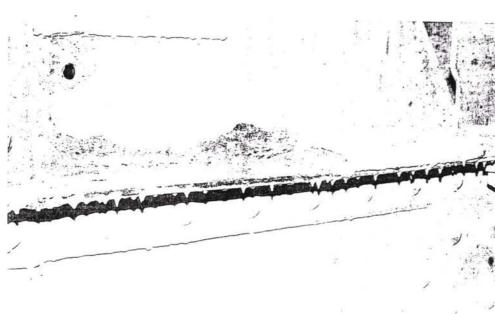

F4-16 Span 23 Deformed support of inspection car track

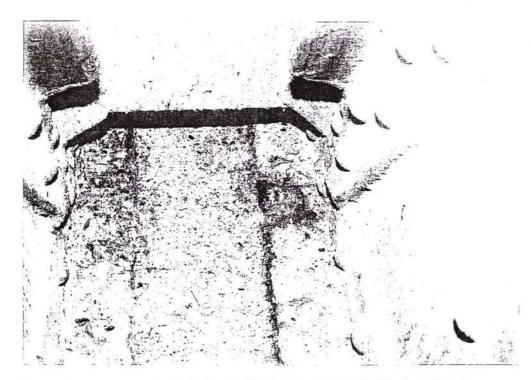


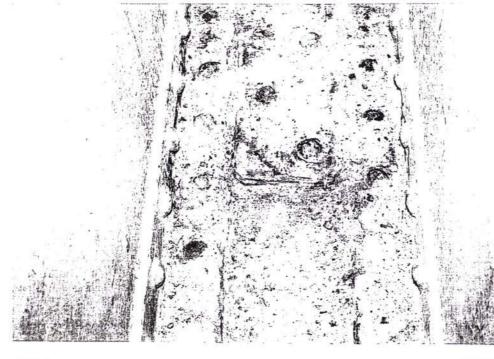
F4-17 Span 23 inspection dat support

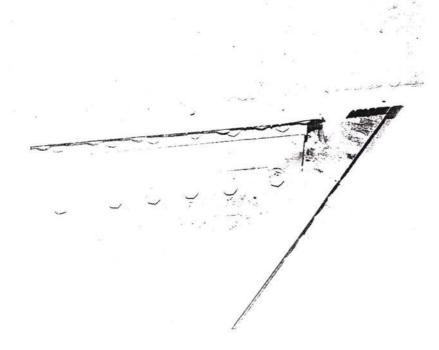


F4-19 Span 23 Inspection car only to be moved by hand of 12 men


F 35-64 Epsh 22 Missing rivet at and chost

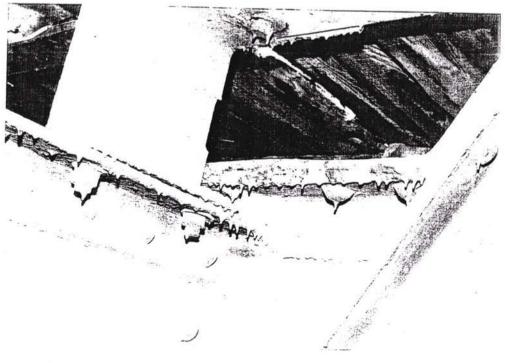

F4-23 Span 23 Missing rivet at end girder


F4-24 Span 23 Corrosion at cross girder

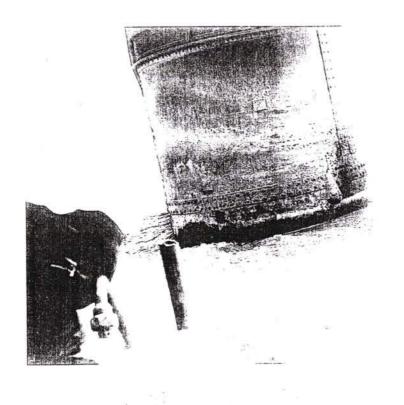

F4-25 Span 23 Missing rivet and corresion at cross claphragm.

F4-26 Span 23 LC corrosion and warping

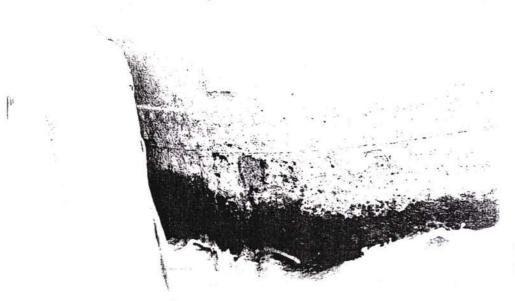
F4-27 Span 23 LC corrosion in the middle of LC node U4 US

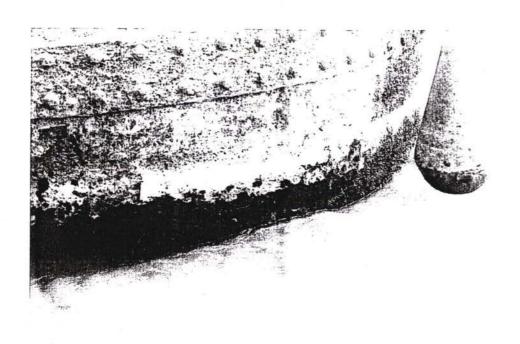


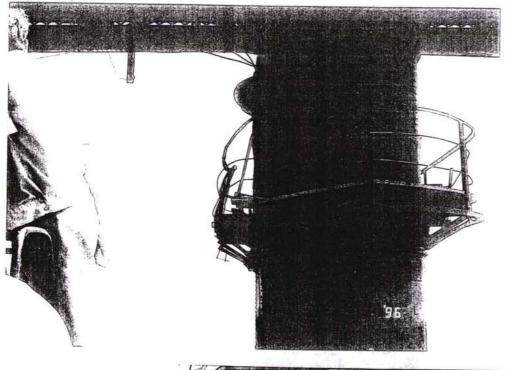
F4-28 Span 23 New strangilisening ef lower wind irading

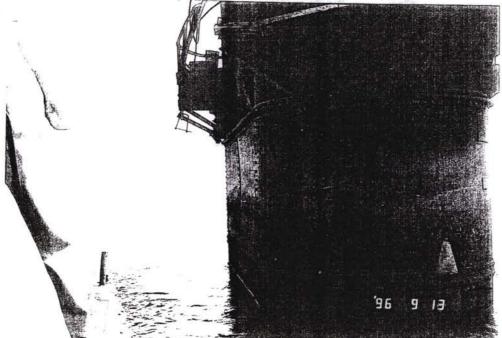


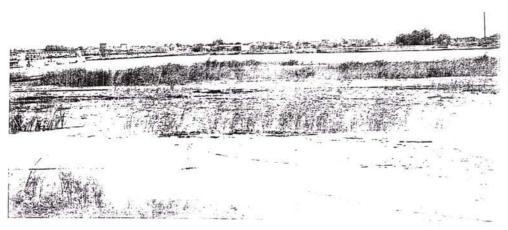
F4-29 Span 23 Lower wind bracing newly strengthened, corrosion

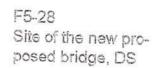

F4-30 Span 23 Cross diaphragm, hole without rivet or bolt

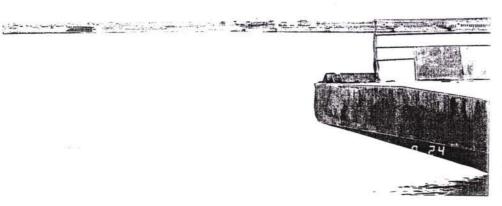

F6461 Span 28 Corresion at longit, girden bross dies


F4-32 Pier 25 Pier 25 from ship

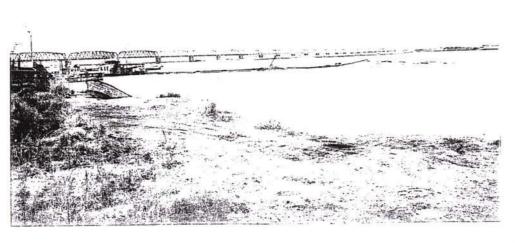

F4-33 Pier 25 Pier 25 from ship Heavy corrosion leaks


F4.94 Fier 2^E Fier 2^E compositor

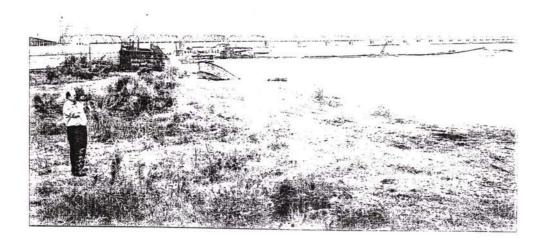

F4-36 Pier 24 Pier 24 hit by a ship collision



Pier 24 F4-37 As F4-36

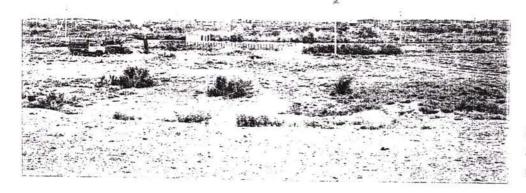


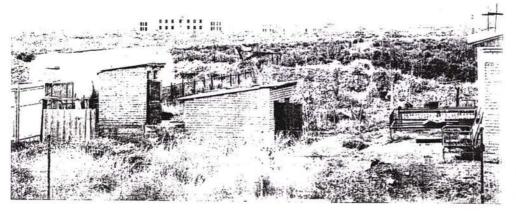
F5-27 Sand banks near the bridge 119

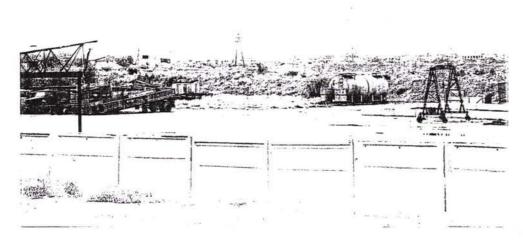


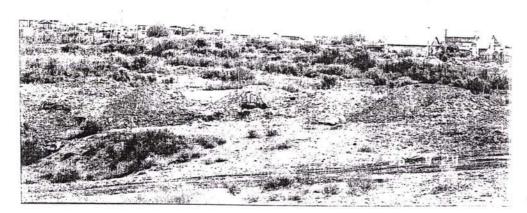
F5-29 As F5-28

F5-30 Tiew of the enteting bridge

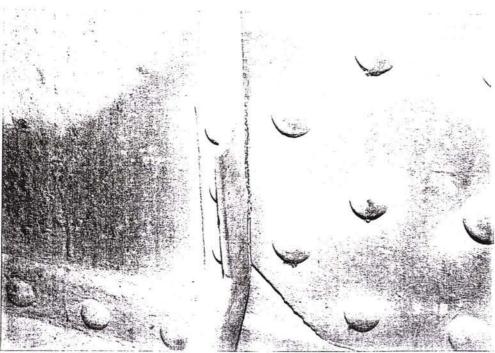

F5-31 As F5-30, with lvir. Fleischmann

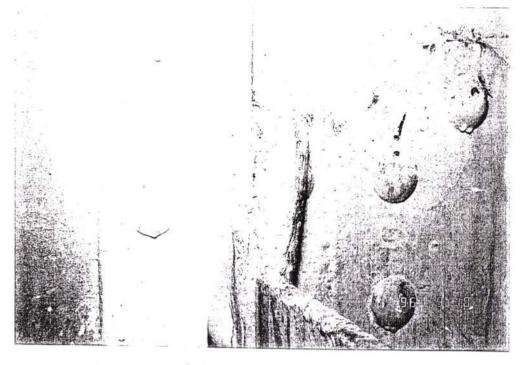

F5-32 As F5-30, with sand bank DS

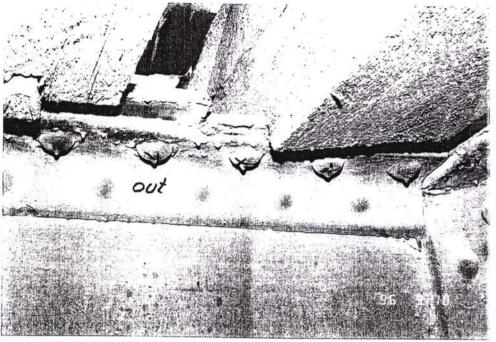

terraseing mac co

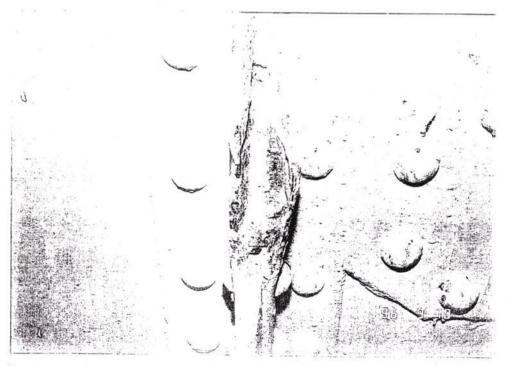

F5-34 Site of new bypass road

F5-35 As F5-34

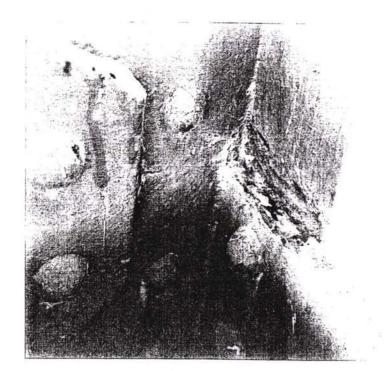

FE-26 点到 医乳子丛

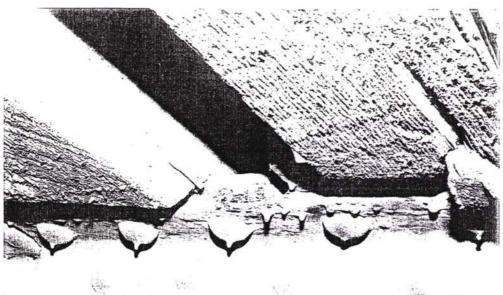

F5-37 As F5-34


F6-01 Span 13 Corrosion at lower wind bracing, behind special cement


F6-02 Span 13 Compsion at inspect rail support.

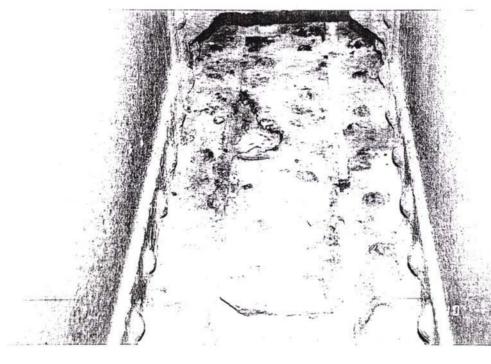
F6-03 Span 13 Special cement at LC node between angles US


Span 13 F6-04 Lose and outstand. rivets at longitudinal girder


Erer 3 node at it

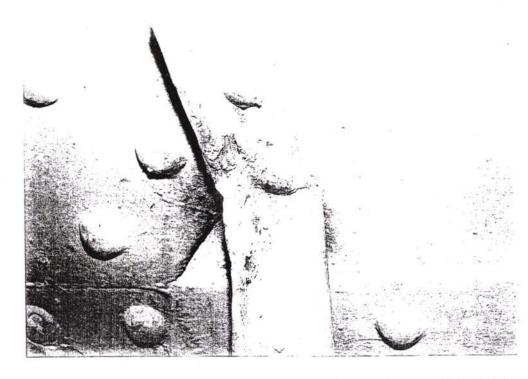
F6-06 Span 13 LC angle corrosion

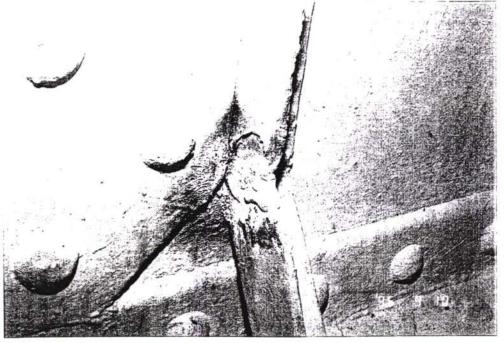
F6-07 Span 13 LC node corrosion

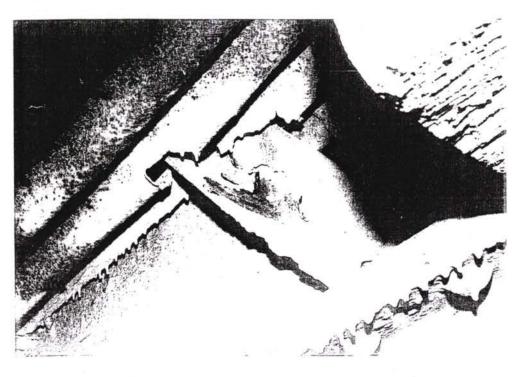

Span 13 F6-08 Longitudinal girder upper flange corros.

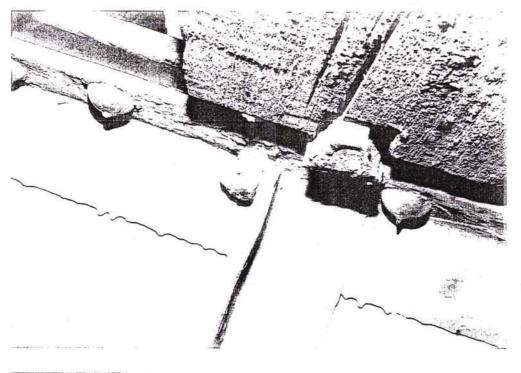

T6.09 Sper 12 Longitudinal girder ocrosian in chiminis

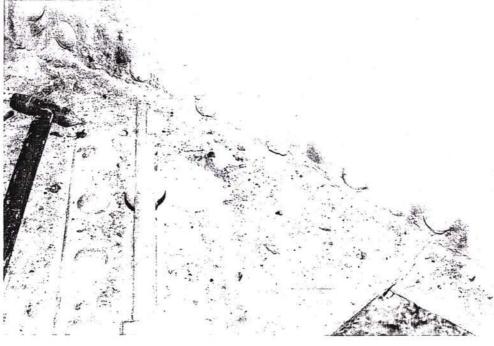
TRACECA - MODULE C 36 CHARDZHEV BRIDGE

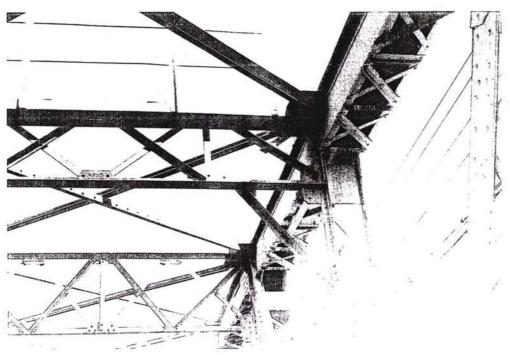

Span 13 F6-10

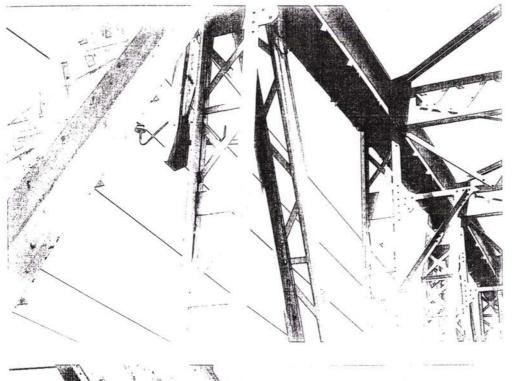

F6-11 Span 13 LC US node, rivet head and plate missing

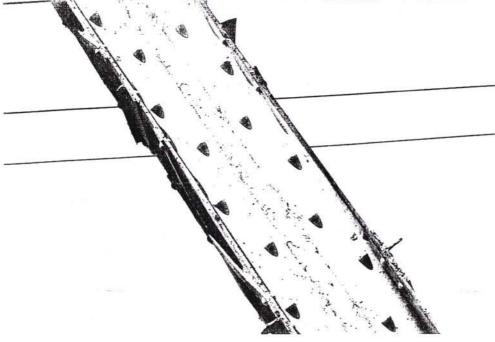

Epan 12

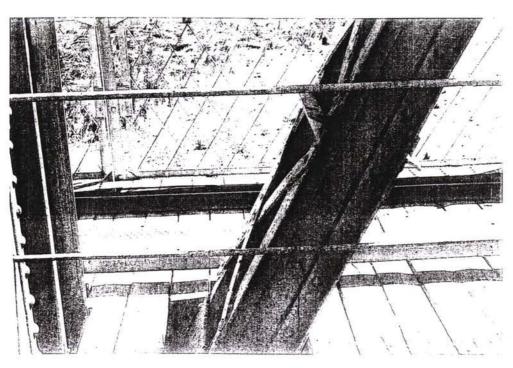

F6-13 Span 13 Broken inspection rail support

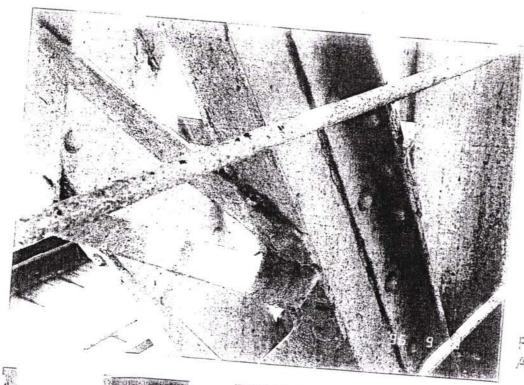

Span 13 F6-14 As F6-13

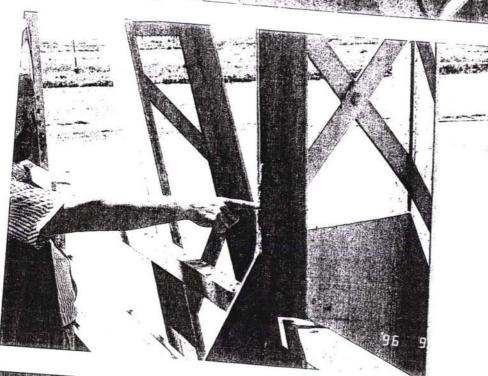

F6-15 Span 13 Longifucinal girder Luper Tanga surros.

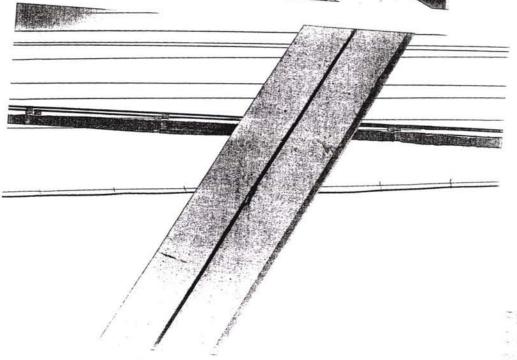

F6-16 Span 13 Longitudinal girder standing off rivet


F6-17 Span 13 LC US corrosion

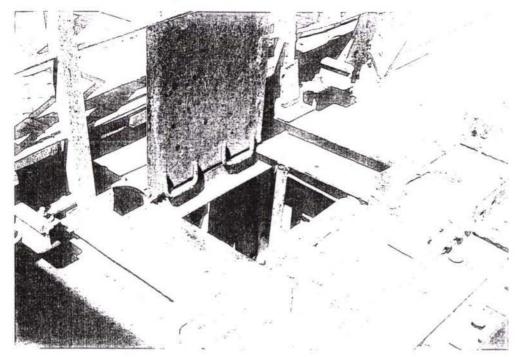

F6-18 Span 13 Bracing annie out ರ್. ಕು∴ಕ


F6-19 Span 13 Bracing angle cut off, not replaced

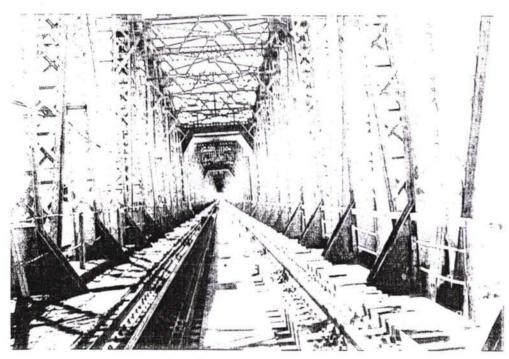

F6-20 Span 13 Corrosion behind special cement of diagonal


Span 13 F6-21 Deformation of fish pianes of diagonal

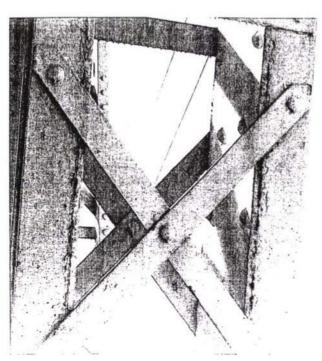
F6-22 Span 13 As F6-21



F6-23 Span 13 Cut off cantilever of former railing

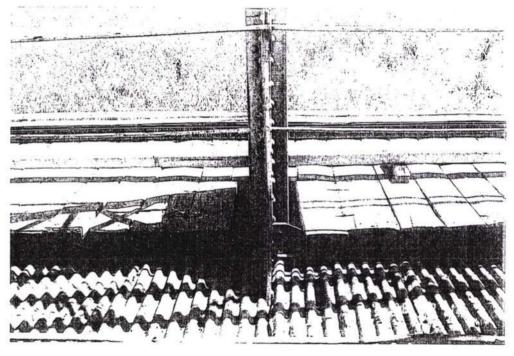


FERRI Spenis Contractor en cla-To the

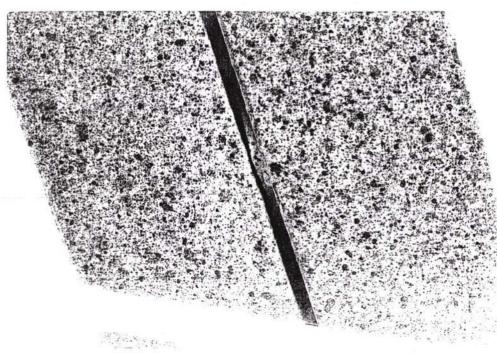


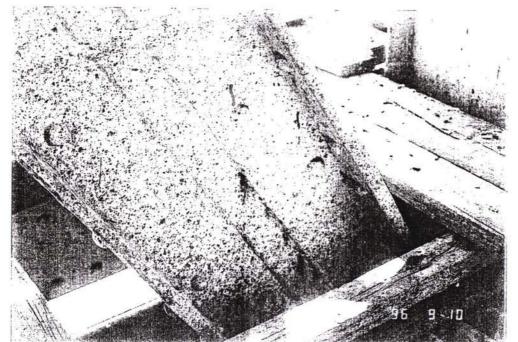


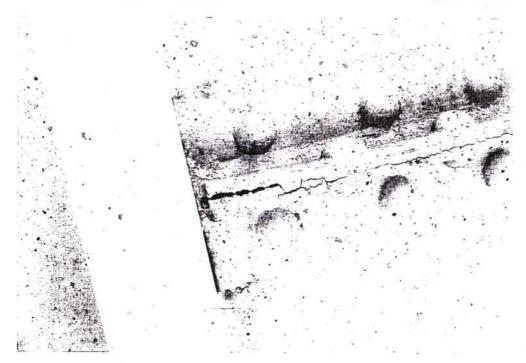
F6-25 Span 13 Trap-door at descent to bearings. at each span

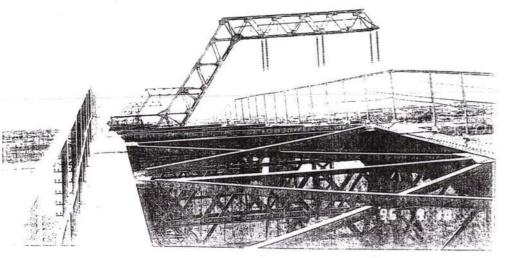


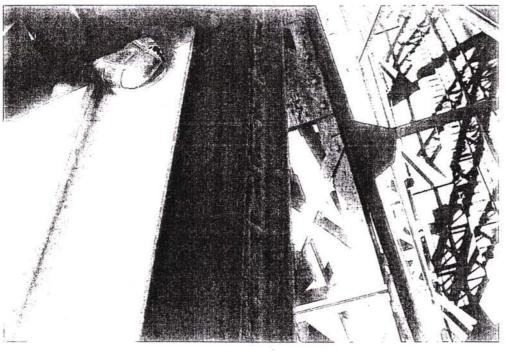
F6-26 Span 13 View along bridge inside

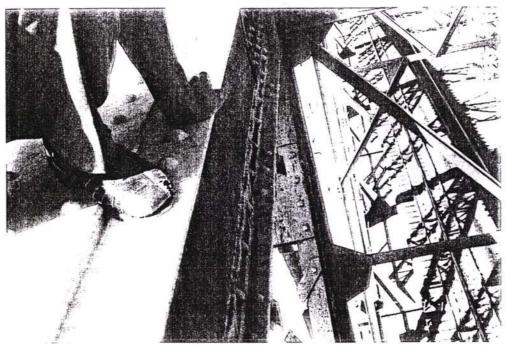


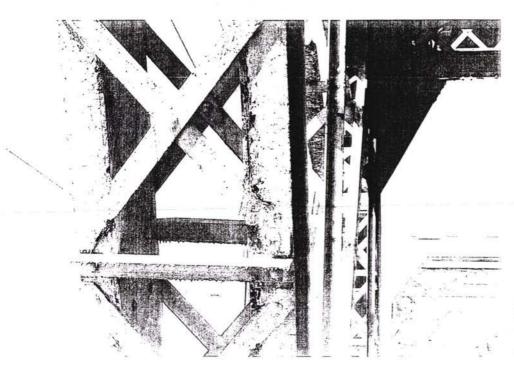

F6-28 Span 13 UC node 1 missing rivet

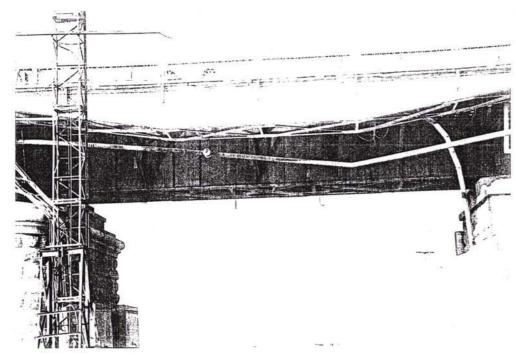

F6-29 Span 13 Deformed stiffener plate between cross girder and vertical

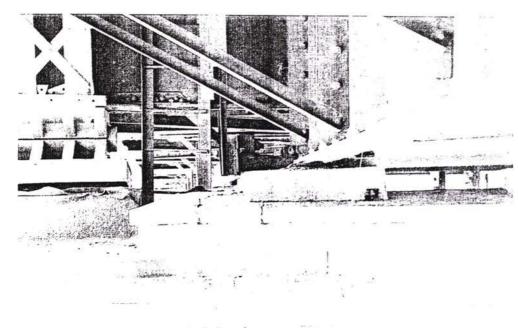

tom a martia. 201 8

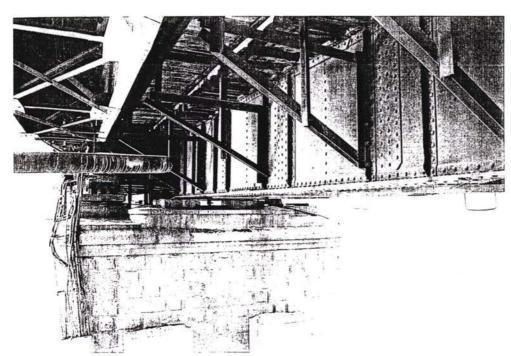

F6-31 Span 13 As F6-30

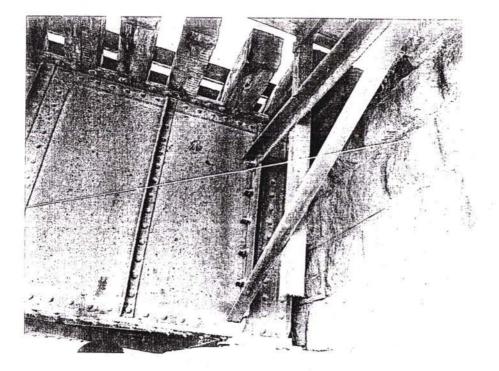

F6-32 Span 13 LC DS angle puffed up by corros.

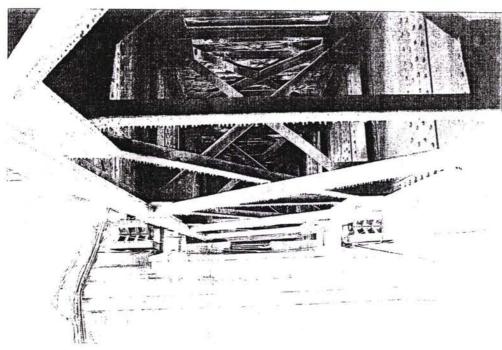

~ , 18 L FVAC

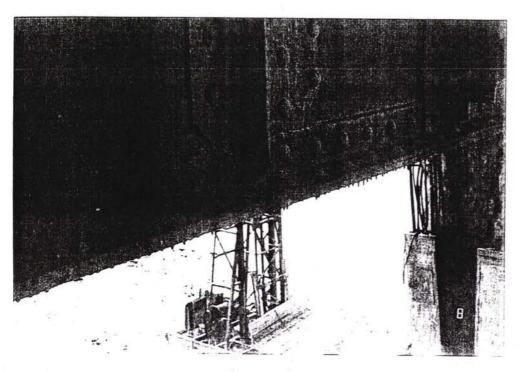

F6-34 Span 13 UC DS puffing up between rivets

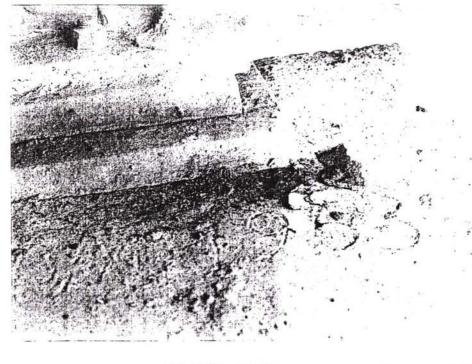

F6-35 Span 13 As F6-34

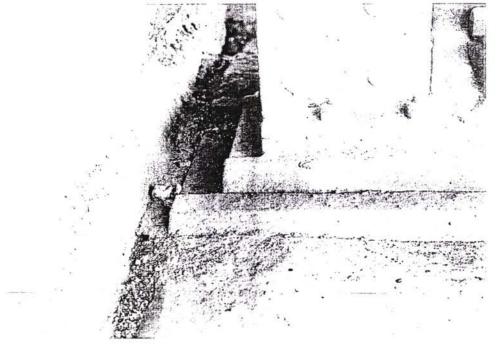

F6-87 Spaning Compaign of diacome

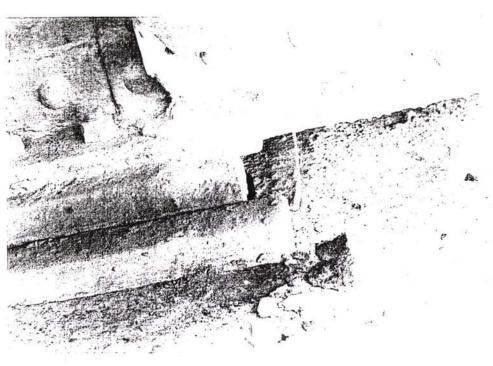

F7-06 Span 26 View of footbridge

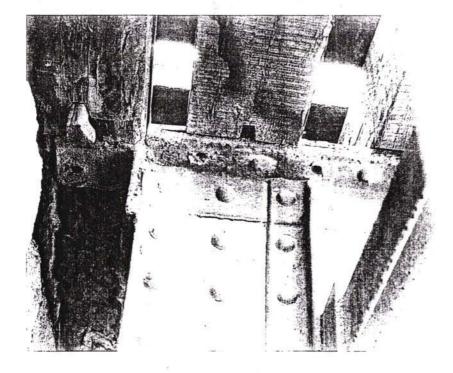

F7-07 Span 26 Bearing A1 with cracked stone


F7-08 Span 26 View from US


F7-09 Span 26 Footbridge - bolted cantilever

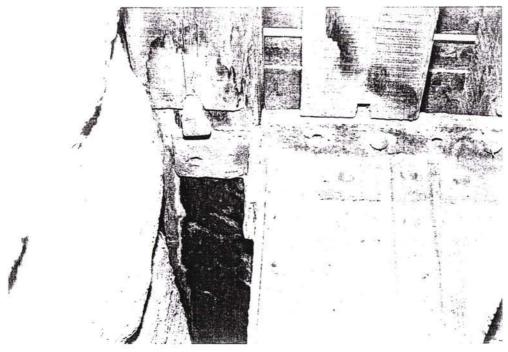

F7-10 Span 26 Bridge - lower side

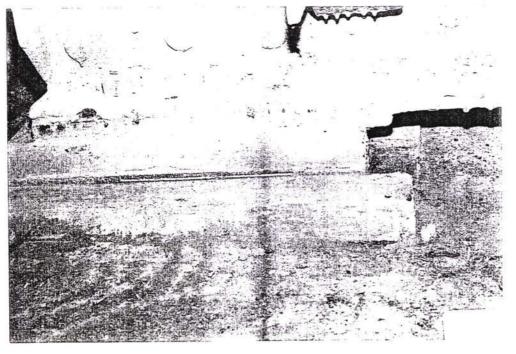

F7-11 Span 26 Wain girder from DS


F7-12 Span 26 Bearing B2 defective mortar

F7-13 Span 26 Bearing B2 water channel

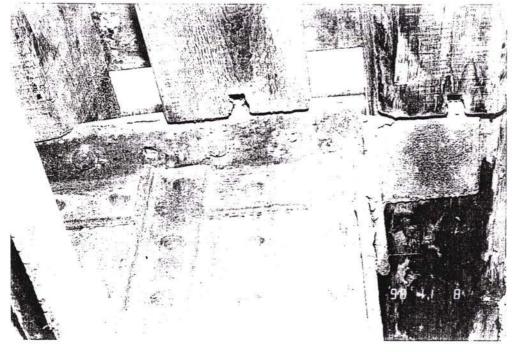
F7-14 Span 26 Bearing B2 defective mortar


F7-15 Span 26 Angle welded to structure

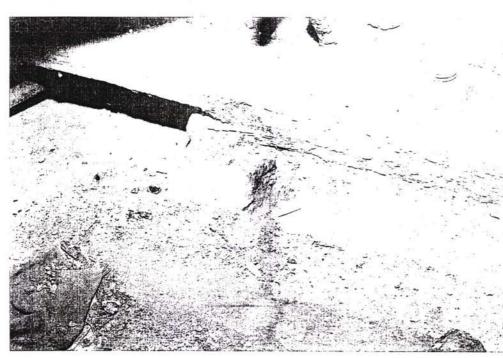

F7-17 Span 26 Bearing B2

F7-18 Span 26 Bearing B2

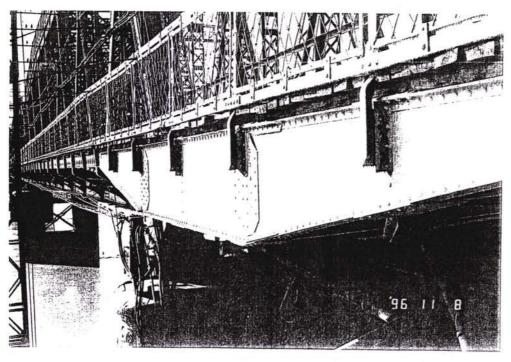
F7-19 Span 26 Angle welded to structure



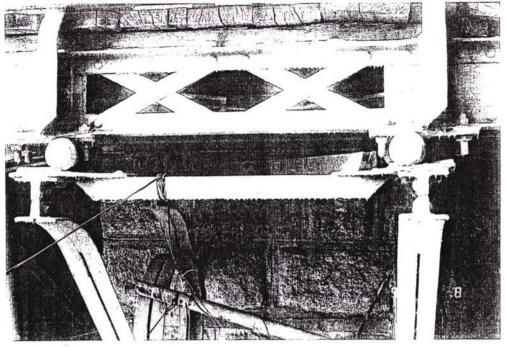
F7-20 Span 26 Bearing B2 vertical movement



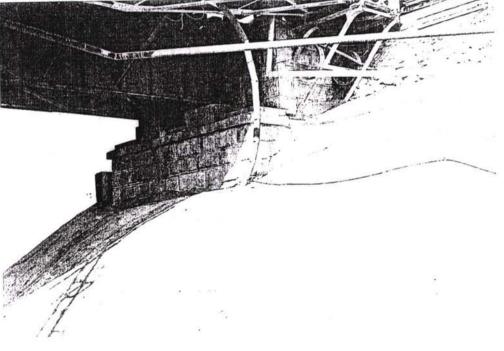
F7-22 Span 26 Bearing B1 -Distortion of upper bearing plate



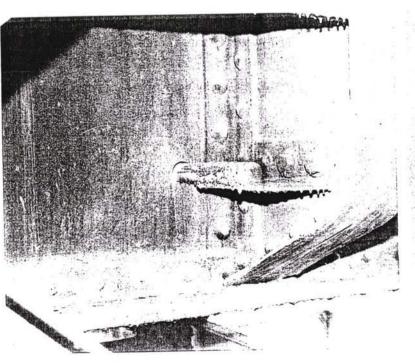
F7-23 Span 26 Welded fixing angle for sleepers

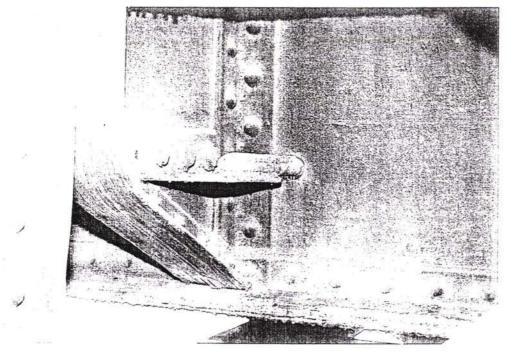


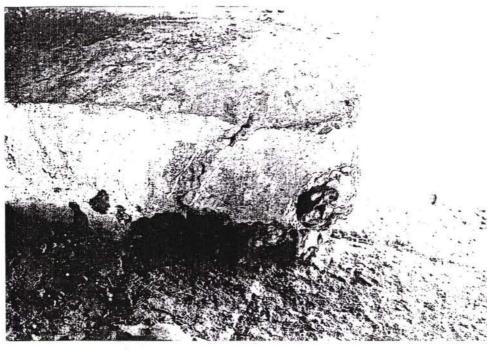
F7-24 Span 26 Bearing B1 cracked lower plate

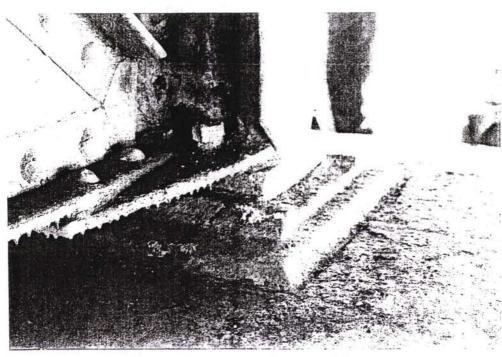


F7-25 Span 26 Footbridge US

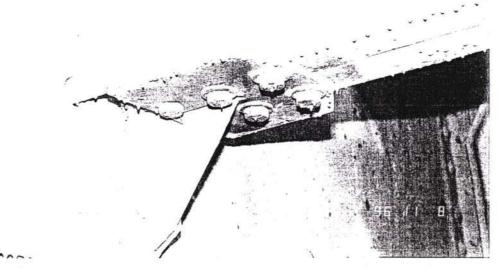


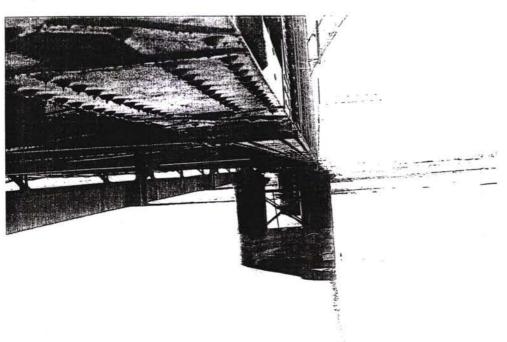

F7-26 Span 26 Roller bearing of footbridge - odd position of rollers

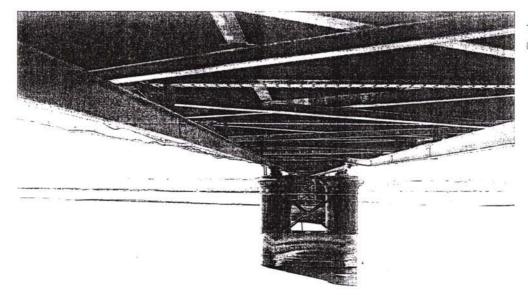

F7-27 Span 26 Farab abutment


F7-28 Span 25 Reinforcement at end crossgirder, outside

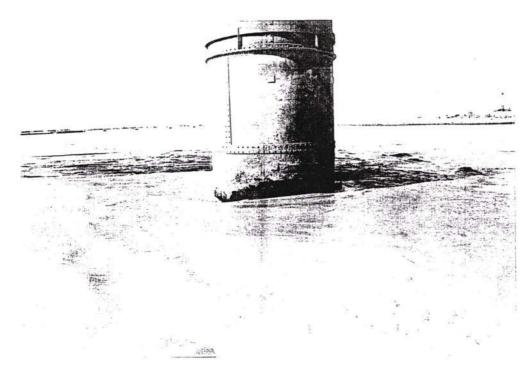

F7-29 Span 25 As F7-28, other side

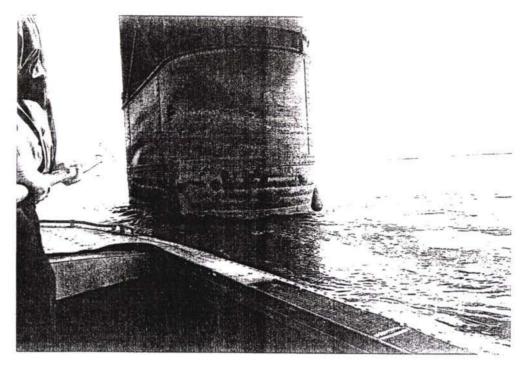

F7-30 Span 26 Bearing A1 - crack

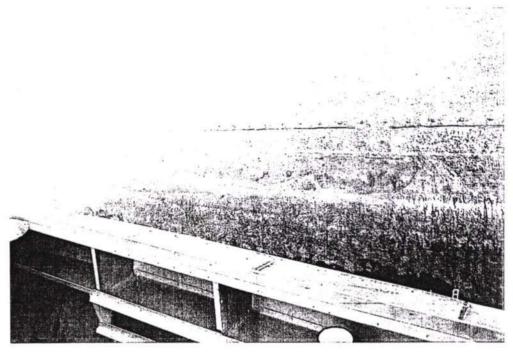

F7-31 Span 26 Bearing A2 Fixed bearing

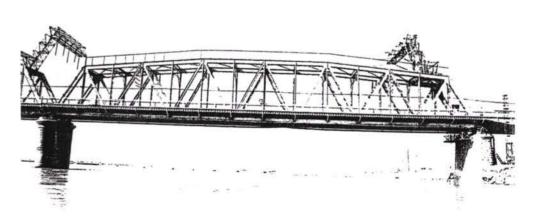

F7-32 Span 26 Bearing A1 bearing block

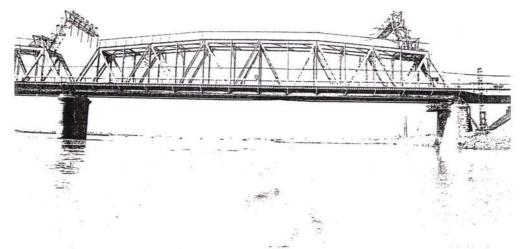
F7-33 Span 25 Reinforcement of crossgirder

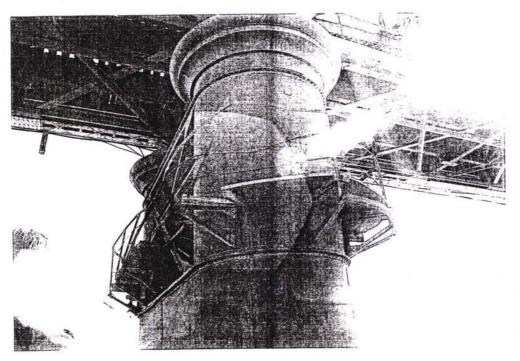

F7-34 Span 25 Lower side of span

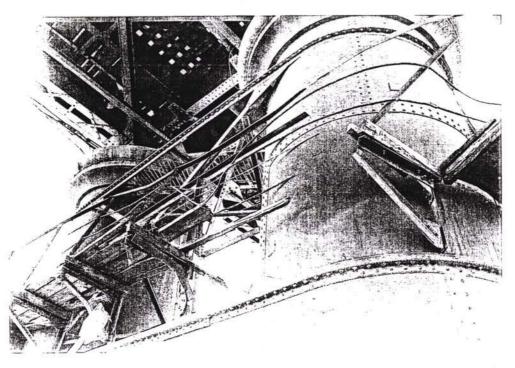

F7-36 Span 25 As F7-35


F8-00 Span 25 Bearing A1

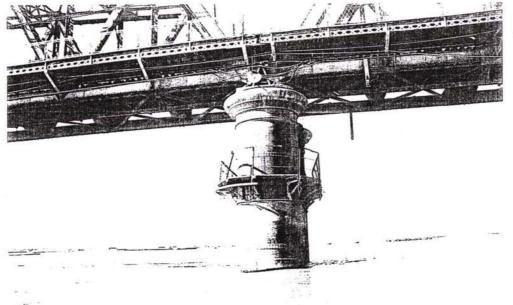

F8-01 Pier 25 View from boat


Pier 25 F8-02 As F8-01

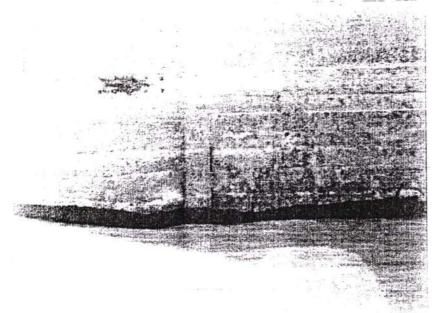

F8-03 Pier 25 As F8-01


F8-04 Span 25 View from US

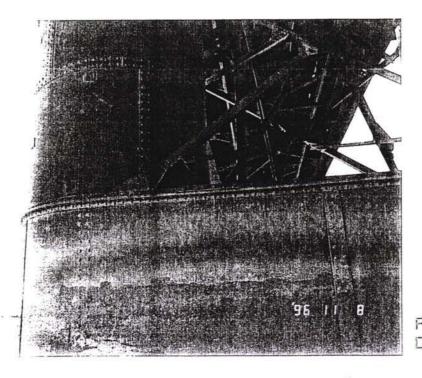
F8-05 Span 25 As F8-04

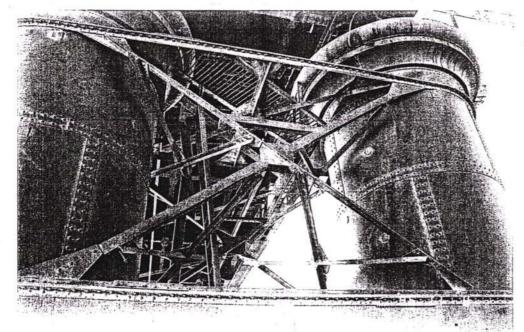


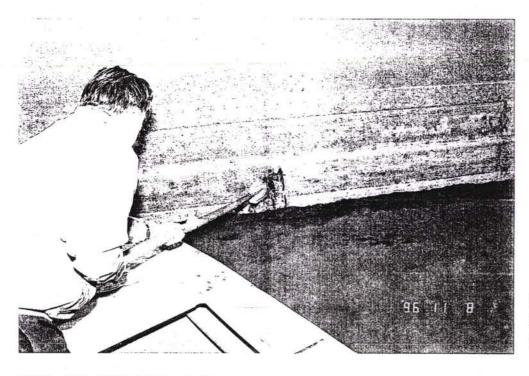
F8-06 Pier 24 Demolished after ship collision



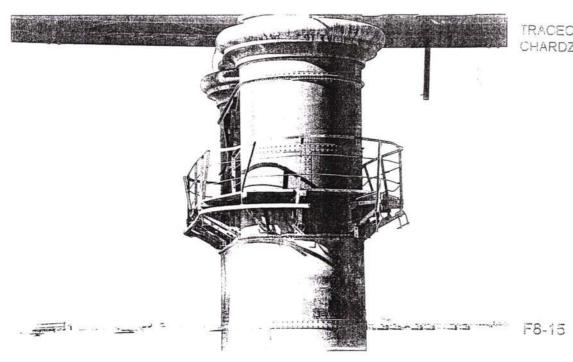
F8-07 Pier 24 As F8-06


TRACECA - MODULE C 57 CHARDZHEV BRIDGE

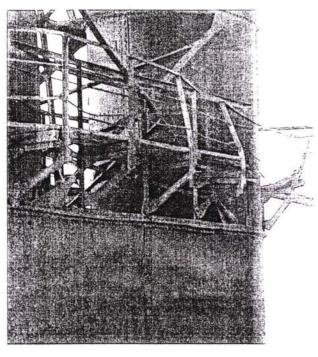

F8-08 Pier 24 As F8-06


F8-09 Pier 24 As F8-06

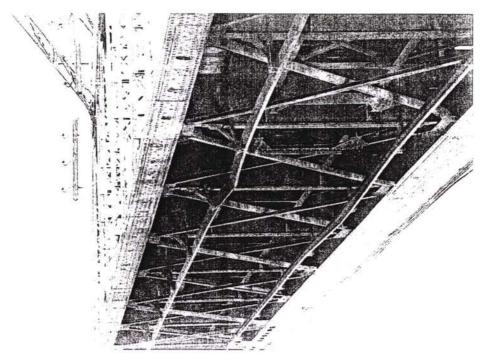
Pier 23 F8-11 Detai!

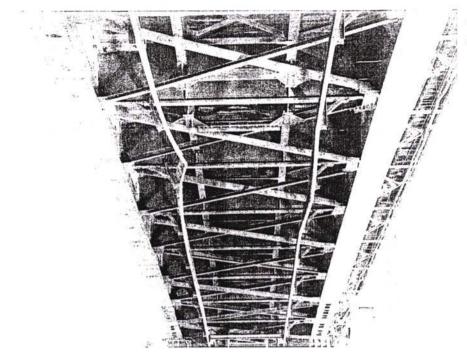


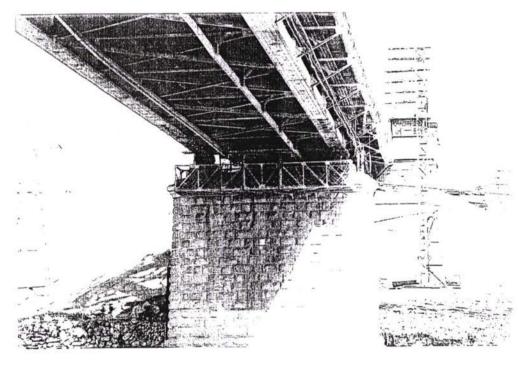
F8-12 Pier 23 Bracing

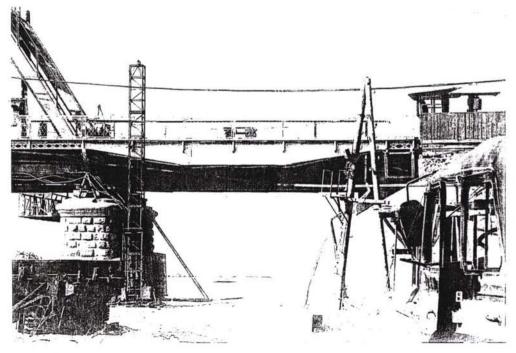


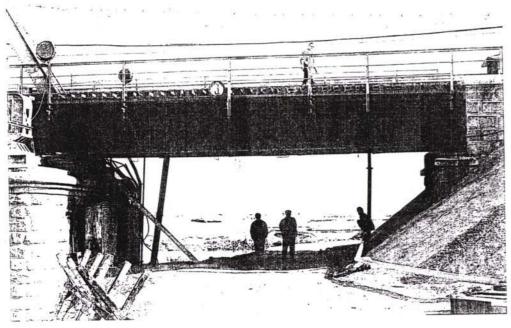
F8-13 Pier 23 Mr. Kazanov, director



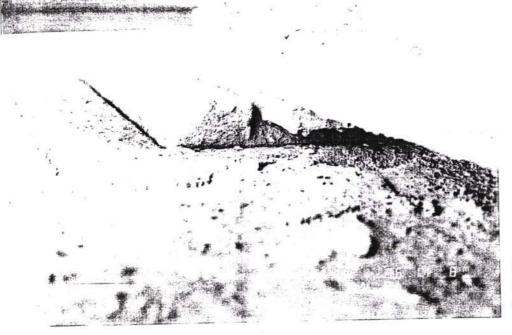

8-15 Pier 24


F8-16 Pier 24

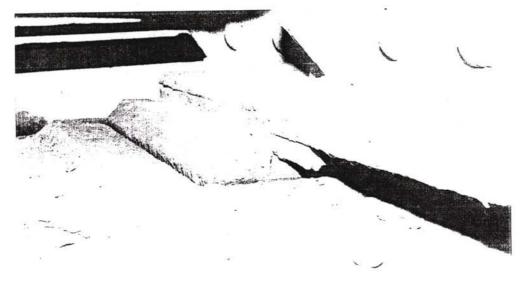

F8-17 Span 25 Bent rail of inspection car



F8-19 Span 25 As F8-17



F8-21 Span 25 Bridge with guard room

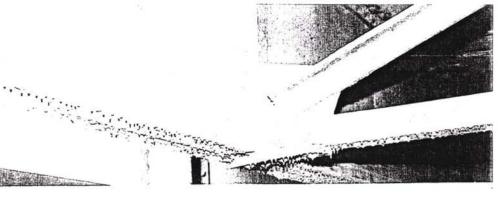


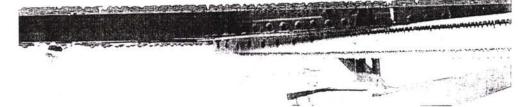
F8-24 Span 0

F8-25 Span 0 Bearing B1 vertical movement

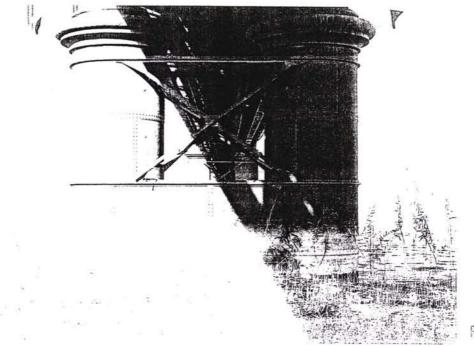
F8-26 Span 0 Bearing A1 vertical movement

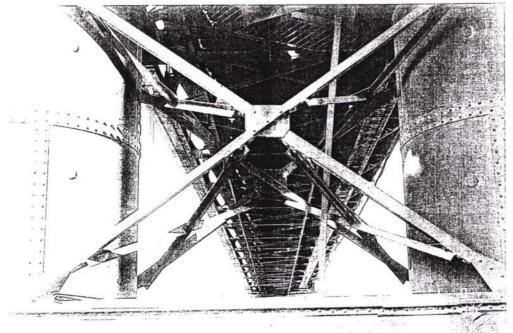
Bearing B1 - concrete chipping

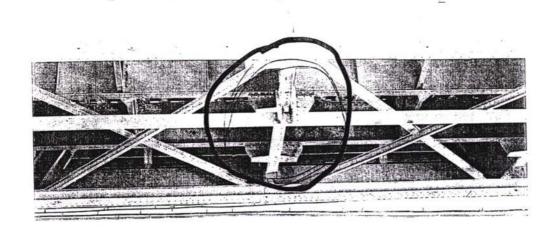




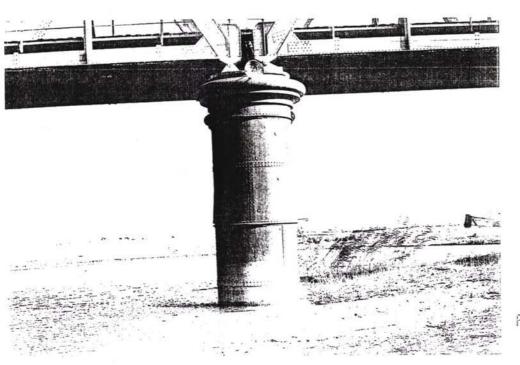
F8-30 Span 0
Bearing B1 chipping to reinforcement

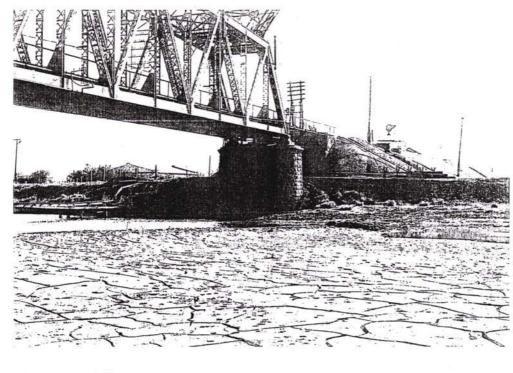

F8-31 Span 0 As F8-30

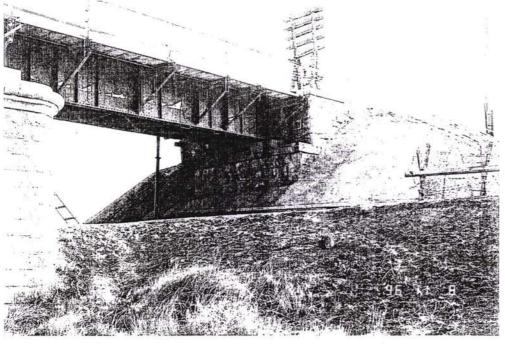


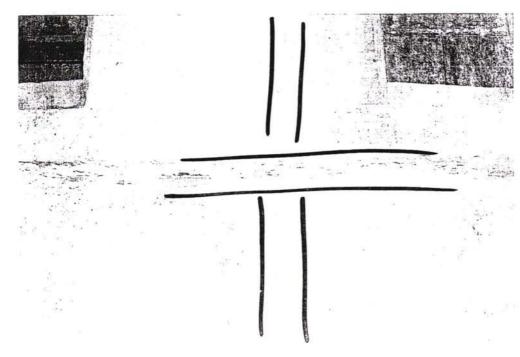

F8-32 Span 0 Gusset plate of longit, girder loose

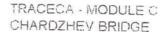
F8-34 Span 0 Bearing A1 chipping of concrete

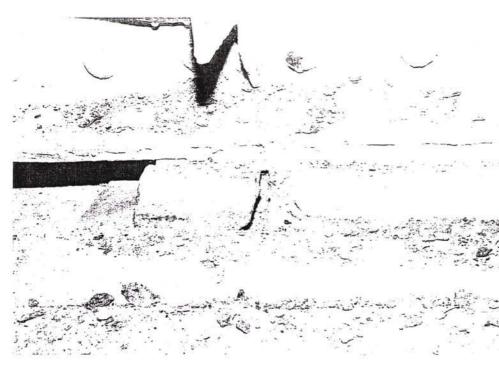



Pier 3 F8-36

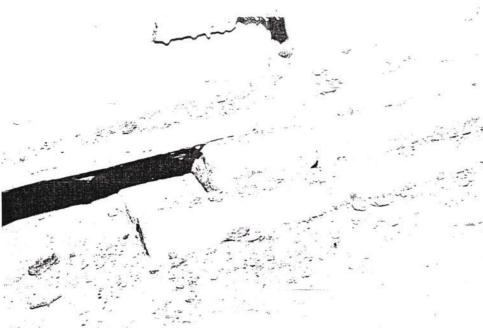

F9-00 Span 9 Reinforcements


Pier 6 F9-01

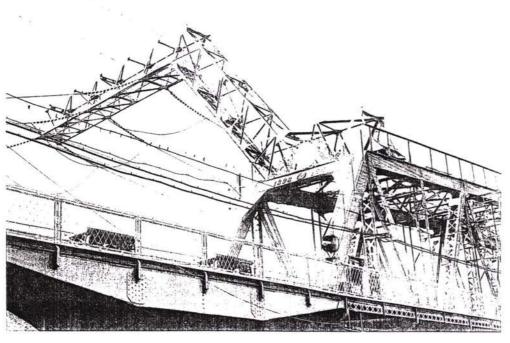

F9-02 Span 1 Span 0 behind span 1

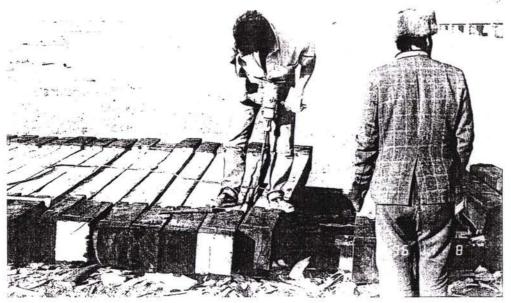


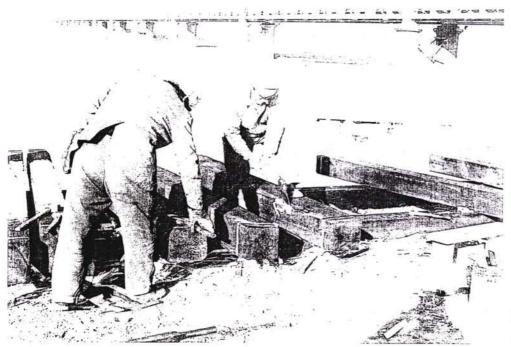
Span 0 F9-03

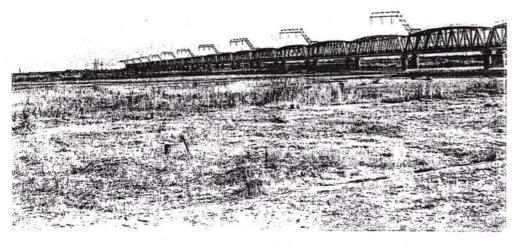


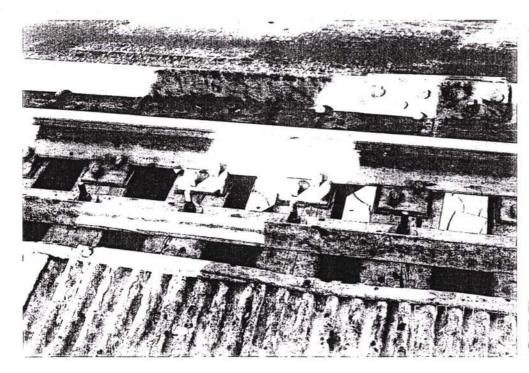
F9-04 Abutment 0 Cracks in the stone

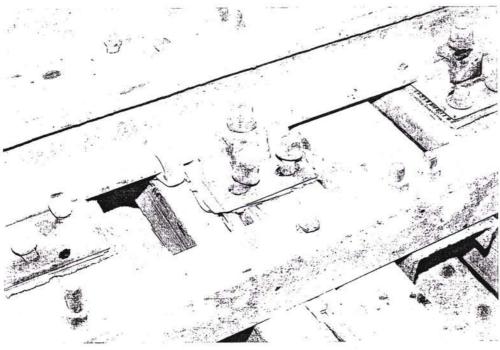



F9-05 Span 0
Bearing B2 Broken part of upper
bearing plate

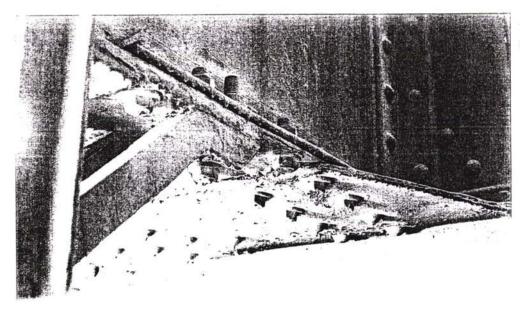

F9-06 Span 0 As F9-05

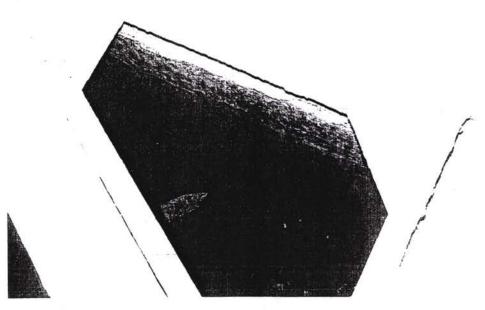

F9-07 Span 1 End frame with high voltage line

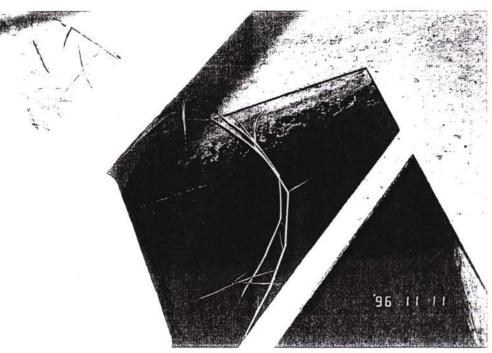

F9-10 Sleeper, no impregnation


F9-11 As F9-10

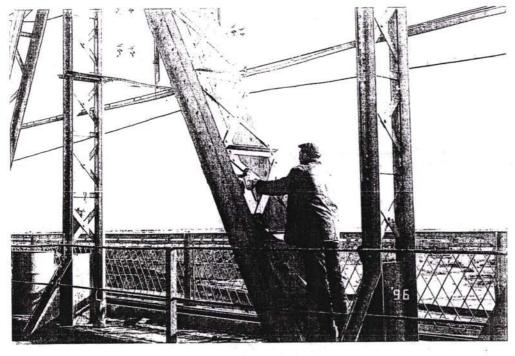
F9-12 Total view


F10-00 Loose rail fasteners (nails)

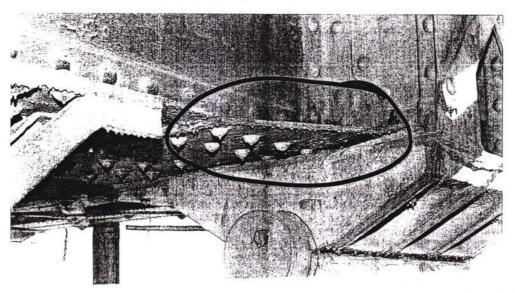

F10-05 As F10-00

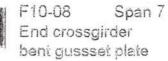

F10-01 Pier 9 Corrosion at bearing

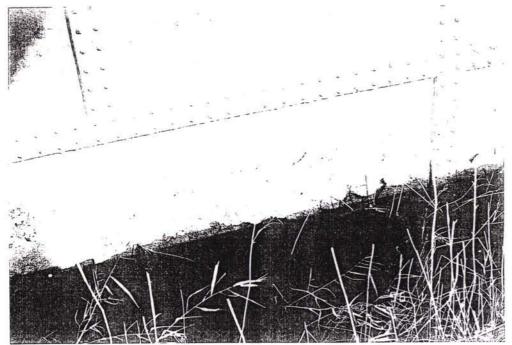
F10-02 Span 1 End crossgirder bent and corroded plate

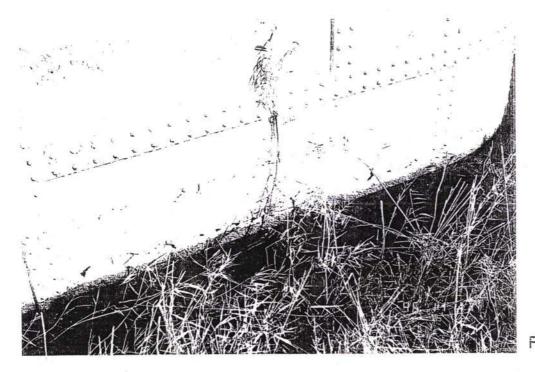


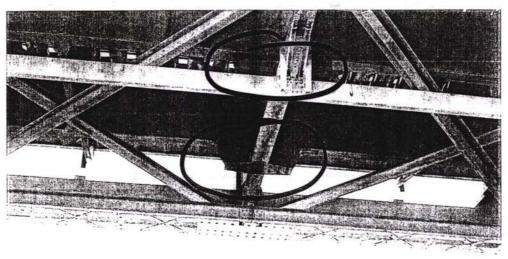
F10-03 Pier 4 Inside view water filled

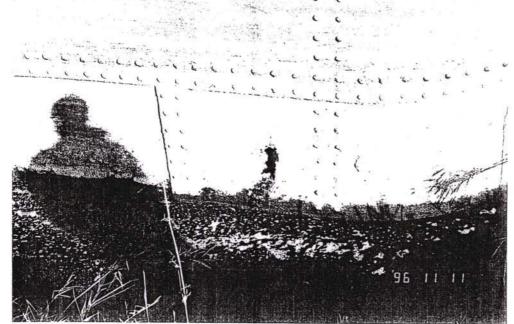


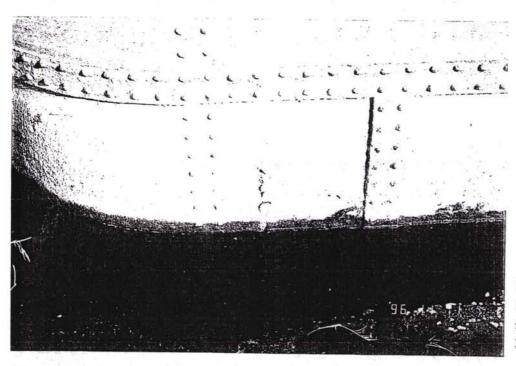

F10-04 Pier 4 As F10-03



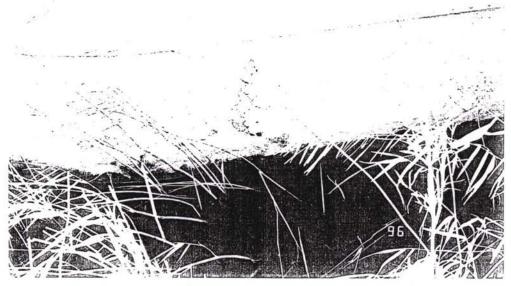

F10-07 Derusting method with hammer

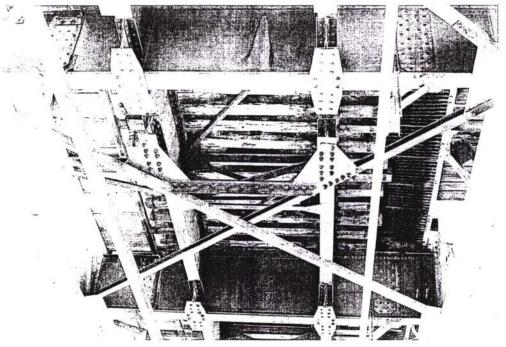


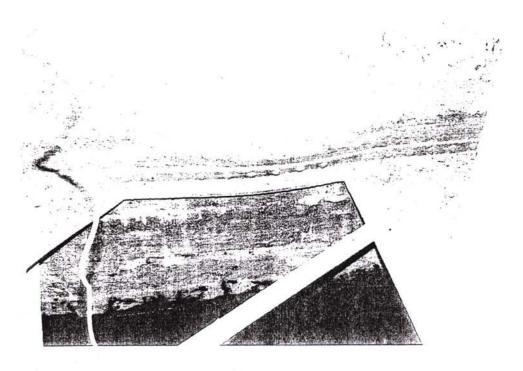

F10-09 Pier 7

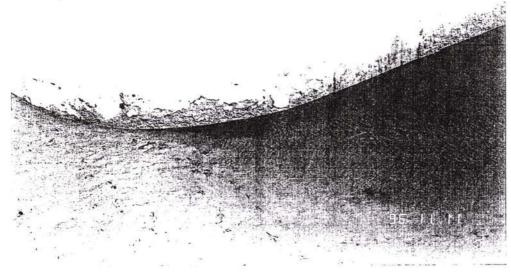

F10-10 Pier 7

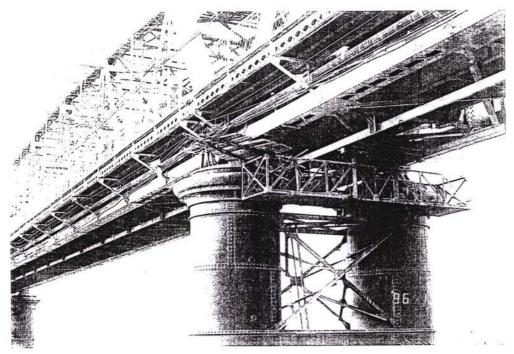

F10-11 Span 5 Strengthening

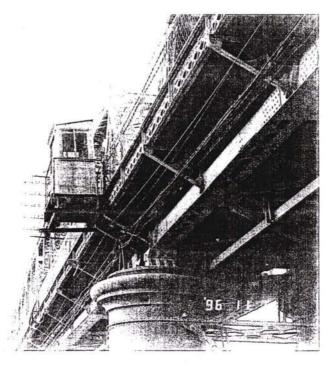

F10-12 Pier 7 Hole in the steel shell US, 300 x 70 mm

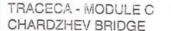

F10-13 Pier 7 Hole in the steel shell DS, 350 x 10 mm

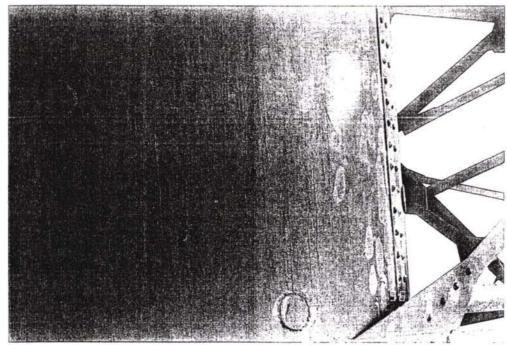

F10-14 Pier 8 US view


F10-15 Pier 8 DS cracks

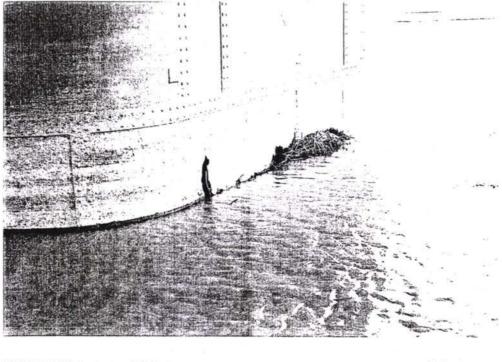

F10-16 Span 9 Strengthening


F10-17 Pier 12 Buckling by land car, from inside

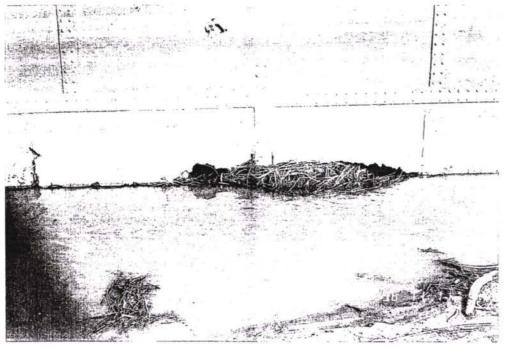

F10-18 Pier 12 View from outside

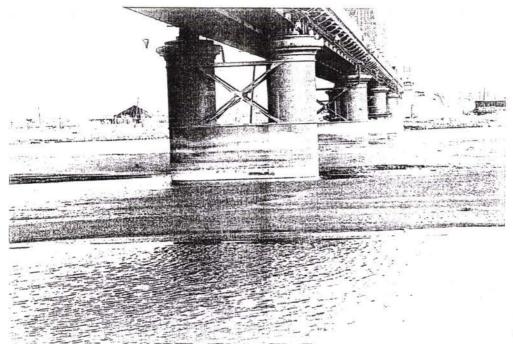


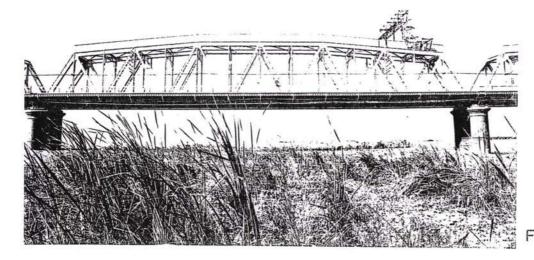
F10-19 Inspection car

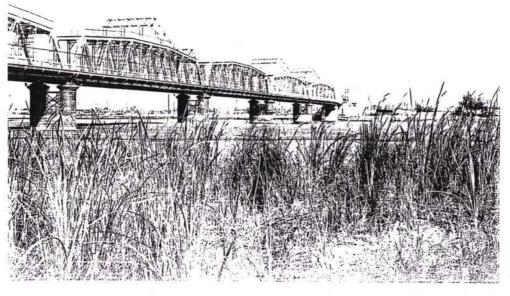


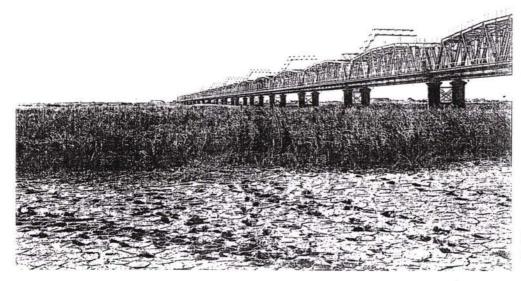
F10-20 Guard room (middle of bridge)

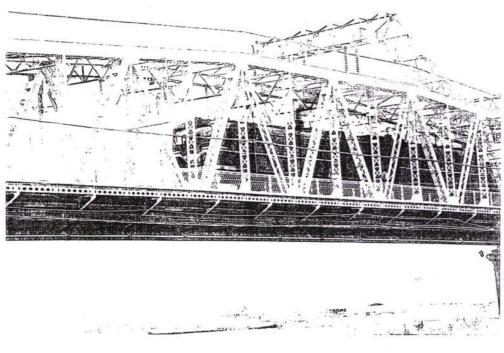


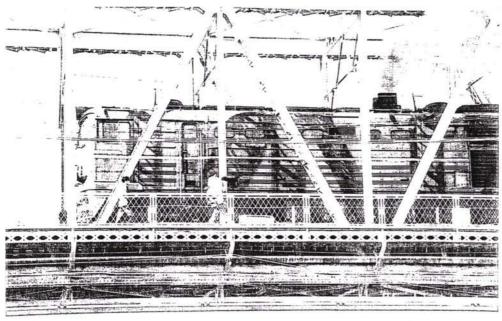

F10-21 Pier 13 Hole (not closed) in the steel shell

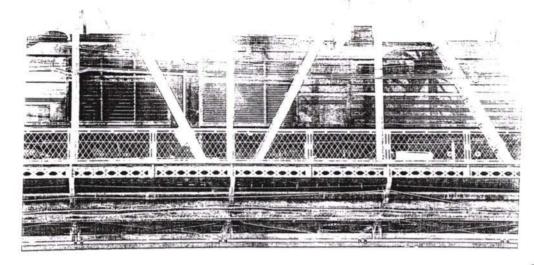

F10-22 Pier 19 Holes due to corrosion

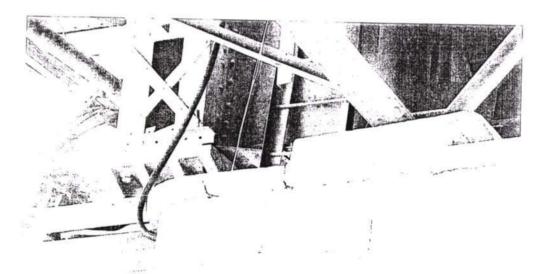

F10-23 Pier 19 As F10-22


F10-24 Pier 21 Corrosion marks

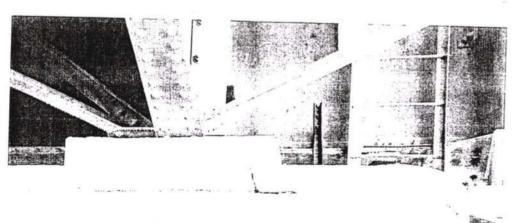

第 F10-25 Span 13


F10-26 25

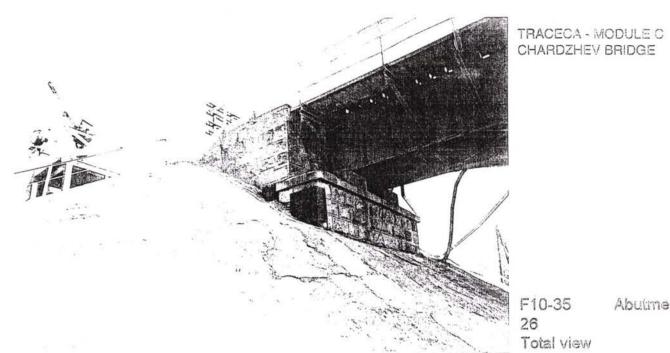

F10-27 View to Farab


F10-28 Train passing

F10-29 As F10-28



F10-30 As F10-28



F10-33 26 DS

Abutment

Abutment F10-35 26 Total view

TRACECA - MODULE C - WS 3200

CHARDZHEV BRIDGE

APPENDIX C CHECK COMPUTATION

22.10.96 Auftrag/Order No. 20 - 007 Seite/Page No. Autor/Author Datum/Date Änderung/Revis. CHECK COMPUTATION 1 ft = 0,3048 m BRIDGE SYSTEM COORDINATES 1 in = 0,0254 m Numbers in brackets ... original drawings see Annex A Numbers: hode numbers of electronic calculation 24 25 (7') (51) (61) (8') (9') (10') (11') (12') (13') (B) (H) (2) 8V Z 9 13 6 10 66.136 -8,325 9.46 -9.144 ÷ 844,9 LOADS

Louourotie Load: 1 engine 2760 in lempter 33 m Load case LC2 unit bad 1 uniformly distributed load 2760/33 = 84 in/m - 0.84. 100 lun/m 6 7 8 9 10

load case LC1: uniformly distributed load 84 m/m

unit load -=0,84.100 m/m load case LC3 holf loaded lordge excentric: elements :: 7 's 20'ed

bodose LC4

desol load, estimated:

according tustrian tables with approximated weight assumptions: (see page C/3)

truss span with trade in bottom postion, riple track: ro/w:

a) main girder

b) wind brognes

e) conflevers

f) footway floor, trolley rails

g) lungection car vails

nounded

for 1 man proder:

27,5 m/2

MASS ESTIMATION OF RAILWAY BRIDGES

					Tafel				E.	
	Nô					und zweigleisig Lastenzüge S			dken	
1	2	3	4	5	6	7	8	9	10	11
TYPE	SPAN			MATER	LOAD		Anteile	für 1 m	Brückenlänge	
5	Stütz-	ein- oder	Houp!	Bau-	Lasten-	Stahl	gewicht	der Übe	rbauten	
Bavart	weite /	zwei- gleisig	abstand b	stahl	zug	Haupiträger 2:	Vert I Wind verband	2 Wind verbånde	Fahrbahnträger 3)	fahrbahnge wicht
	-			. Brücke	n mit off	ener Fahrbahn				
				1	1 5	571				1
Vollwandträger	10			St 37	L	48 ι				
mit unmittelbarer		1		31 37	N	65.1				
Schwellenauflage-	bis	eingl	2,0		<u> </u>	461	150	200	20	760
ing	!			6. 50	1	391		1		
8	50			St 52	7	54 t				
					E	45.1		i		
				1	S	57 1		1	81 b + 190	
	10		2,6	St 37	L	48 1	80		76 b + 170	
Vollwandträger					N	68 (3 85 b + 200	
mit versenkter	bis	eingl	bis		E	561	bis	_	7 88 + 707	200 b + 60
Fahrbahn 5)	J.,	cg.			S	46 1			67 b + 160	
rombonn ,	50		405	St 52	L	39 1	140		62 b + 145	
The state of the s	50		4,85		N	54 t	140		} 706 + 170	
					E	45 1		1	1)	
TRUSS CIRDER		SINGE	o1		5	341 + 325	200	320	81 b + 190	
Fachwerkträger *)	25	TRACK	4.8	St 37	L	27 1 + 235	200	320	76 b + 170	1
a) Fahrbahn unten		IKAGE	bis	1,500,502	Κ.	40 1 + 400	700	320	85 b + 200	1
	bis	eingl	5,3		E	127 + 300			1 1000	200 b + 60
 b) Fahrbahn oben oder etwas ver- 			b)		S	241 + 305	180	280	67 b + 160	ı
senkt	100		2,5	St 52	L	201 + 180	100	100	62 b + 145	
	100		bis 3,2		N E	28 1 + 370 23 1 + 270	180	280	70 b + 170	l
	-			i	S	461 + 1080		1	115b + 720	
			0.5	122 222		351 + 790	320	580	115 b + 500	1
	25		8,5	St 37	L	53 / + 1320			1130 + 300	-
Fachwerkträger *)	0		1000		N E	43 / + 1000	320	580	120 6 + 750	12
Fahrbahn unten	bis	zweigl	bis		5	291 + 885		-	115 b + 460	200 b + 12
ranroann unten				100	1	221 + 650	280	520	115 b + 270	1
i	100		9,5	St 52		36 / + 1070				1
					E	36 t + 1070 27 t + 820	280	520	120 b + 480	
			[m] q		selected					
			Maingades distance		Train type, heaviest=N selected	Mass of main phaden	Massof 1 bracing	Mass of 2 bracings	Floor 8 hade gonden Måss	Mass of other floor
			Main		Traju	Mass	Mass	Mass	Floor	Mass

^{*)} St 52 T und St 55 S. Für Eisenbahnbrucken aus St 44 sind die Mittelwerie der Gewichte für St 37 und St 52 zu nehmen.

Autor/Author Datum/Date Seite/Page No. 4 Änderung/Revis. 20 -007

3. CROSS SECTION TYPES

	Flowents .	Number	Jr [cm²]	A [cm²]	As[au²]
pro	61-2'-3'	1	124.200	269	159
Upper chard	B3'-4'-5'	2	175,300	380	159
del	B5-6-7'	3	187.900	424	159
	HO-1-2	4	54,500	217	132
7	H 2-3	5	90,900	300	145
chard	H3-4	6	93.700	315	14 <u>-</u>
	44-5	7	134.200	383	159
(somer	H2-6	8	136.500	399	128
)	H6-7	9	142.200	419	158
	Po-1'	10	140,300	322	152
	P1'-2	11	13.700	191	26
	P 2-3'	12	22,82	206	29
20 s	P3'-4	13	8,300	107	50
hidgo uals	P4-5'	14	19.700	140	25
P.q	52,-0	15	دهی، یا	82	40
	P6-7'	16	19,600	157	66
Venti	CT	17	2.100	64	30

Assumption: us excentricity due to axis deviation.

AMU-DARYA BRIDGE	ANGLES	Planungsgesellschaft für Stahl- und M	aschinenbau Wien
Querschnittswerte von	Blechträgern	/ Cross section values of plate girders	A Nr. 20-007

Quersc	hnitt/cross	section:	L89x76x8				
Bez.	by[mm]	hx[mm]	ex[mm]	A=b.h[cm2]	A*ex[cm3]	A*ex*ex[cm4]	Jx(o)[cm4]
leg -	89	8	4	7,12	3	1	0
leg I	8	68	42	5,44	23	96	21
				0,00	0	0	0
				0,00	0	0	0
Fauit	aleut	ex(s)[cm]	2,05	12,56	26	97	21
~.		H(tot)[mn	76,0	A[cm2]	i(x) [cm] 2,29	Jx(s)[cm4]=	66
plate		Note:				Jx(s)[m4]=	6,5872E-07
157				x(o) [mm]	76,0	Wx(o)[cm3]=	-11,9
D	$e_{x}(s)$			x(a) [mm]	8	Wx(a)[cm3]=	32,2
L			- 1	x(b) [mm]		Wx(b)[cm3]=	32,2
Vers.05	0894/Piringer			x(u) [mm]	0,0	Wx(u)[cm3]=	32,2

Quersch	nitt/cross	section:	L 102x102	2x11			
Bez.	by[mm]	hx[mm]	ex[mm]	A=b.h[cm2]	A*ex[cm3]	A*ex*ex[cm4]	Jx(o)[cm4]
leg -	102	11	5,5	11,22	6	3	1
leg I	11	91	56,5	10,01	57	320	69
				0,00	0	0	0
				0,00	0	0	0
		ex(s)[cm]	2,95	21,23	63	323	70
		H(tot)[mn	102,0	A[cm2]	i(x) [cm] 3,13	Jx(s)[cm4]=	208
193	3×11	Note:				Jx(s)[m4]=	2,0781E-06
				x(o) [mm]	102,0	Wx(o)[cm3]=	-28,7
			1	x(a) [mm]		Wx(a)[cm3]=	70,3
			1	x(b) [mm]		Wx(b)[cm3]=	70,3
Vers.050	894/Piringer			x(u) [mm]	0,0	Wx(u)[cm3]=	70,3

Quersc	hnitt/cross	section:	L 76x76x9	9,5			
Bez.	by[mm]	hx[mm]	ex[mm]	A=b.h[cm2]	A*ex[cm3]	A*ex*ex[cm4]	Jx(o)[cm4]
leg -	76	9,5	4,75	7,22	3	2	1
leg I	9,5	66,5	42,75	6,32	27	115	23
				0,00	0	0	0
				0,00	0	0	0
		ex(s)[cm]	2,25	13,54	30	117	24
		H(tot)[mn	76,0	A[cm2]	i(x) [cm] 2,31	Jx(s)[cm4]=	72
162	3×9,5	Note:				Jx(s)[m4]=	7,2477E-07
17.	X 10			x(o) [mm]	76,0	Wx(o)[cm3]=	-13,5
			- 1	x(a) [mm]	2.1	Wx(a)[cm3]=	32,2
			1	x(b) [mm]		Wx(b)[cm3]=	32,2
Vers.050	894/Piringer			x(u) [mm]	0,0	Wx(u)[cm3]=	32,2

Quersch	nnitt/cross s	section:	L 127x89	c13			
Bez.	by[mm]	hx[mm]	ex[mm]	A=b.h[cm2]	A*ex[cm3]	A*ex*ex[cm4]	Jx(o)[cm4]
leg -	89	13	6,5	11,57	8	5	2
leg I	13	114	70	14,82	104	726	161
				0,00	0	0	0
				0,00	0	0	0
		ex(s)[cm]	4,22	26,39	111	731	162
		H(tot)[mn	127,0	A[cm2]	i(x) [cm] 4,01	Jx(s)[cm4]=	424
		Note:				Jx(s)[m4]=	4,2412E-06
203	×13			x(o) [mm]	127,0	Wx(o)[cm3]=	-50,0
:53				x(a) [mm]		Wx(a)[cm3]=	100,6
			1	x(b) [mm]		Wx(b)[cm3]=	100,6
Vers.050	894/Piringer			x(u) [mm]	0,0	Wx(u)[cm3]=	100,6

Quersch	nitt/cross	section:	L 152x102	2x11			
Bez.	by[mm]	hx[mm]	ex[mm]	A=b.h[cm2]	A*ex[cm3]	A*ex*ex[cm4]	Jx(o)[cm4]
leg -	102	11	5,5	11,22	6	3	1
leg I	11	141	81,5	15,51	126	1030	257
				0,00	0	0	0
				0,00	0	0	0
		ex(s)[cm]	4,96	26,73	133	1034	258
	1	H(tot)[mn	152,0	A[cm2]	i(x) [cm] 4,87	Jx(s)[cm4]=	634
		Note:				Jx(s)[m4]=	6,3413E-06
243	5 x 11			x(o) [mm]	152,0	Wx(o)[cm3]=	-61,9
0.550.00.00				x(a) [mm]	10000	Wx(a)[cm3]=	127,9
			- 1	x(b) [mm]		Wx(b)[cm3]=	127,9
Vers.050	894/Piringer			x(u) [mm]	0,0	Wx(u)[cm3]=	127,9

Bez.	by[mm]	hx[mm]	ex[mm]	A=b.h[cm2]	A*ex[cm3]	A*ex*ex[cm4]	Jx(o)[cm4]
leg -	89	. 10	5	8,90	4	2	1
leg I	10	117	68,5	11,70	80	549	133
				0,00	0	0	0
				0,00	0	0	C
	(ex(s)[cm]	4,11	20,60	85	551	134
	ſ	H(tot)[mn	127,0	A[cm2]	i(x) [cm] 4,05	Jx(s)[cm4]=	338
		Note:				Jx(s)[m4]=	3,3803E-06
200	6×10			x(o) [mm]	127,0	Wx(o)[cm3]=	-39,3
	- / !-		1	x(a) [mm]		Wx(a)[cm3]=	82,3
	- 1		- 1	x(b) [mm]		Wx(b)[cm3]=	82,3
Vers.050	894/Piringer		- 1	x(u) [mm]	0.0	Wx(u)[cm3]=	82,3

Quersc	hnitt/cross s	ection:	L 176x76	(9,5			
Bez.	by[mm]	hx[mm]	ex[mm]	A=b.h[cm2]	A*ex[cm3]	A*ex*ex[cm4]	Jx(o)[cm4]
leg -	176	9,5	4,75	16,72	8	4	1
leg I	9,5	66,5	42,75	6,32	27	115	23
				0,00	0	0	C
				0,00	0	0	C
	-	ex(s)[cm]	1,52	23,04	35	119	25
	ſ	H(tot)[mn	76,0	A[cm2]	i(x) [cm] 1,98	Jx(s)[cm4]=	91
_	Į.	Note:				Jx(s)[m4]=	9,0747E-07
242	×9,5			x(o) [mm]	76,0	Wx(o)[cm3]=	-14,9
215	, , , , ,		1	x(a) [mm]		Wx(a)[cm3]=	59,8
	ı			x(b) [mm]		Wx(b)[cm3]=	59,8
Vers.050	0894/Piringer			x(u) [mm]	0,0	Wx(u)[cm3]=	59,8

Bez.	by[mm]	hx[mm]	ex[mm]	A=b.h[cm2]	A*ex[cm3]	A*ex*ex[cm4]	Jx(o)[cm4]
leg -	89	9,5	4,75	8,46	4	2	1
leg I	9,5	79,5	49,25	7,55	37	183	40
				0,00	0	0	0
				0,00	0	0	0
		ex(s)[cm]	2,57	16,01	41	185	40
	- 1	H(tot)[mn	89,0	A[cm2]	i(x) [cm] 2,73	Jx(s)[cm4]=	119
		Note:				Jx(s)[m4]=	1,1941E-06
169	×9,5			x(o) [mm]	89,0	Wx(o)[cm3]=	-18,9
1				x(a) [mm]		Wx(a)[cm3]=	46,4
				x(b) [mm]		Wx(b)[cm3]=	46,4
Vers 050	894/Piringer		- 1	x(u) [mm]		Wx(u)[cm3]=	46,4

Datenschutz:

psm

AMU-DAR						t für Stahl- und Masc	THE RESERVE THE PERSON NAMED IN COLUMN 2 IS NOT THE OWNER.
				section values	of plate girders		A.Nr. 20-007
7	t/cross sec		1'-2'-3'	4 () (a)	14 1 01		
Bez.	by[mm]	hx[mm]	ex[mm]	A=b.h[cm2]	A*ex[cm3]	A*ex*ex[cm4]	Jx(o)[cm ²
webs	26	610	305	158,60	4837	147538	4917
ower L	157	16	590	25,12	1482	87443	
upper L	193	44	30	84,92	255	764	13
				0,00	0	0	
				0,00	0	0	
				0,00	0	0	
				0,00	0	0	
		ex(s)[cm]	24,47	268,64	6574	235745	4932
45		H(tot)[mm]	610,0	A[cm2]	i(x) [cm] 21,50	Jx(s)[cm4]=	124.18
hx	_ '	Note:				Jx(s)[m4]=	0,00124184
	▲ [x(o) [mm]	610,0	Wx(o)[cm3]=	-3.399,
b	ex, x		l	x(a) [mm]	0,0	Wx(a)[cm3]=	5.074,
				x(b) [mm]	00	Wx(b)[cm3]=	5.074,
Vers.05089	94/Piringer			x(u) [mm]	50350035	Wx(u)[cm3]=	5.074,
				, , , , ,			
Querschnit	tt/cross sec	ction: B	3'-4'-5'				
Bez.	by[mm]	hx[mm]	ex[mm]	A=b.h[cm2]	A*ex[cm3]	A*ex*ex[cm4]	Jx(o)[cm
webs	26	610	305	158,60	4837	147538	4917
lower L	157	16	590	25,12	1482	87443	
upper L	193	44	30	84,92	255	764	13
upper pl	635	11	-5,5	69,85	-38	21	4.5
upper pl	381	11	-16,5	41,91	-69	114	
				0,00	0	0	
				0,00	0	ol-	
b		ex(s)[cm]	17,00	380,40	6467	235880	4933
	ех, х	H(tot)[mm]	632,0	A[cm2]	i(x) [cm] 21,47	Jx(s)[cm4]=	175.28
a	A	Note:			. , , , ,	Jx(s)[m4]=	0,00175284
	_ 🕇 1			x(o) [mm]	610.0	Wx(o)[cm3]=	-3.983
0 – 🗀				x(a) [mm]		Wx(a)[cm3]=	10.311
			1	x(b) [mm]		Wx(b)[cm3]=	10.311
Vers.05089	94/Piringer			x(u) [mm]		Wx(u)[cm3]=	9.129
70,0,000	o iii iiiigoi			A(G) [mm]	22,0	WA(G)[GIIIG]	01120
Querschnit	tt/cross sec	ction: B	5'-6'-7'				
Bez.	by[mm]	hx[mm]	ex[mm]	A=b.h[cm2]	A*ex[cm3]	A*ex*ex[cm4]	Jx(o)[cm
webs	26	610	305	158,60	4837	147538	4917
lower L	157	16	590	25,12	1482	87443	
upper L	193	44	30	84,92	255	764	13
upper pl	165	9,5	4,75	15,68	7	4	
upper pl	635	22	-11	139,70	-154	169	5
FF P'				0,00	0	0	
				0,00	0	ő	
		ex(s)[cm]	15,16	424,02	6428	235917	4937
		H(tot)[mm]	632,0	A[cm2]	i(x) [cm] 21,05		187.85
La Company		Note:	002,0	Alone	(A) [OIII] 21,00	Jx(s)[m4]=	0,00187851
hx		14010.		v(a) [mm]	610.0	Wx(o)[cm3]=	-4.097
b	T .			x(o) [mm]			
	ex, x		1	x(a) [mm]		Wx(a)[cm3]=	12.391
				x(b) [mm]		Wx(b)[cm3]=	12.391 10.821
Vare 05080	94/Piringer		1	x(u) [mm]	-22 0	Wx(u)[cm3]=	10.821

Querschni	itt/cross sec	tion: H	0-1-2				
Bez.	by[mm]	hx[mm]	ex[mm]	A=b.h[cm2]	A*ex[cm3]	A*ex*ex[cm4]	Jx(o)[cm4]
webs	26	508	254	132,08	3355	85213	28404
lower L	193	44	30	84,92	255	764	137
				0,00	0	0	0
				0,00	0	0	0
				0,00	0	0	0
				0,00	0	0	0
				0,00	0	0	0
b		ex(s)[cm]	16,63	217,00	3610	85977	28541
	— ех. х	H(tot)[mm]	508,0	A[cm2]	i(x) [cm] 15,84	Jx(s)[cm4]=	54.476
a		Note:				Jx(s)[m4]=	0,000544761
_	_ T 1		-	x(o) [mm]	508,0	Wx(o)[cm3]=	-1.594,5
0			1	x(a) [mm]	0,0	Wx(a)[cm3]=	3.275,0
			- 1	x(b) [mm]	0,0	Wx(b)[cm3]=	3.275,0
Vers.0508	394/Piringer		1	x(u) [mm]	0,0	Wx(u)[cm3]=	3.275,0

Vers 0508	ex, x			x(a) [mm] x(b) [mm] x(u) [mm]	0,0	Wx(a)[cm3]= Wx(b)[cm3]= Wx(u)[cm3]=	6.389,8 6.389,8 5.931,0
ь				x(o) [mm]		Wx(o)[cm3]=	-2.185,4
hx -		Note:				Jx(s)[m4]=	0,0009086
	1	H(tot)[mm]	569,0	A[cm2]	i(x) [cm] 17,41	Jx(s)[cm4]=	90.867
		ex(s)[cm]	14,22	299,85	4264	113717	37788
				0,00	0	0	
				0,00	0	0	(
				0,00	0	0	(
				0,00	0	0	(
lower pl	635	11	-5,5	69,85	-38	21	7
lower L	193	44	30	84,92	255	764	137
webs	26	558	279	145,08	4048	112932	37644
Bez.	by[mm]	hx[mm]	ex[mm]	A=b.h[cm2]	A*ex[cm3]	A*ex*ex[cm4]	Jx(o)[cm4

Doz	bu (mm)	hw[mm]	aulmm1	A h hiomal	Atou[om0]	Atautaulam 41	lu/a\fam4
Bez.	by[mm]	hx[mm]	ex[mm]	A=b.h[cm2]	A*ex[cm3]	A*ex*ex[cm4]	Jx(o)[cm4
webs	26	558	279	145,08	4048	112932	37644
lower L	193	44	30	84,92	255	764	137
lower pl	165	9,5	4,75	15,68	7	4	1
lower pl	635	11	-5,5	69,85	-38	21	7
				0,00	0	0	C
				0,00	0	0	C
				0,00	0	0	C
b		ex(s)[cm]	13,54	315,53	4272	113721	37789
	ex, x	H(tot)[mm]	569,0	A[cm2]	i(x) [cm] 17,23	Jx(s)[cm4]=	93.683
a	A .	Note:				Jx(s)[m4]=	0,000936827
	_ [x(o) [mm]	558,0	Wx(o)[cm3]=	-2.216,7
0			1	x(a) [mm]	0,0	Wx(a)[cm3]=	6.920,1
			1	x(b) [mm]	0,0	Wx(b)[cm3]=	6.920,1
Vers.0508	94/Piringer		1	x(u) [mm]		Wx(u)[cm3]=	6.400,0

Querschni	tt/cross sec	ction: H	4-5				
Bez.	by[mm]	hx[mm]	ex[mm]	A=b.h[cm2]	A*ex[cm3]	A*ex*ex[cm4]	Jx(o)[cm4]
webs	26	610	305	158,60	4837	147538	49179
lower L	193	44	30	84,92	255	764	137
lower pl	635	22	-11	139,70	-154	169	56
				0,00	0	0	0
				0,00	0	0	0
				0,00	0	0	0
				0,00	0	0	0
		ex(s)[cm]	12,89	383,22	4938	148471	49373
	111	H(tot)[mm]	632,0	A[cm2]	i(x) [cm] 18,71	Jx(s)[cm4]=	134.205
hx -		Note:				Jx(s)[m4]=	0,001342046
b				x(o) [mm]	610,0	Wx(o)[cm3]=	-2.789,3
ь	ex, x			x(a) [mm]	0,0	Wx(a)[cm3]=	10.414,3
		•	1	x(b) [mm]	0,0	Wx(b)[cm3]=	10.414,3
Vers.0508	94/Piringer			x(u) [mm]	-22,0	Wx(u)[cm3]=	8.895,6

0 - 🗀	$\supset \bot$			x(o) [mm] x(a) [mm]		Wx(o)[cm3]= Wx(a)[cm3]=	-2.809,1 11.011,2
u	A	Note:				Jx(s)[m4]=	0,001365256
a	ex, x	H(tot)[mm]	632,0	A[cm2]	i(x) [cm] 18,50	Jx(s)[cm4]=	136.526
b		ex(s)[cm]	12,40	398,90	4946	148475	49374
				0,00	0	0	(
				0,00	0	0	(
				0,00	0	0	
lower pl	635	22	-11	139,70	-154	169	56
lower pl	165	9,5	4,75	15,68	7	4	
lower L	193	44	30	84,92	255	764	137
webs	26	610	305	158,60	4837	147538	49179
Bez.	by[mm]	hx[mm]	ex[mm]	A=b.h[cm2]	A*ex[cm3]	A*ex*ex[cm4]	Jx(o)[cm4

Querschni	tt/cross sec	ction: H	6-7				
Bez.	by[mm]	hx[mm]	ex[mm]	A=b.h[cm2]	A*ex[cm3]	A*ex*ex[cm4]	Jx(o)[cm4]
webs	26	610	305	158,60	4837	147538	49179
lower L	193	44	30	84,92	255	764	137
lower pl	635	22	-11	139,70	-154	169	56
lower pl	381	9,5	-26,75	36,20	-97	259	3
				0,00	0	0	0
				0,00	0	0	0
				0,00	0	0	0
		ex(s)[cm]	11,54	419,42	4842	148730	49375
	*	H(tot)[mm]	641,5	A[cm2]	i(x) [cm] 18,41	Jx(s)[cm4]=	142.216
hx	'	Note:				Jx(s)[m4]=	0,00142216
b	—' ▲			x(o) [mm]	610,0	Wx(o)[cm3]=	-2.875,6
Ь	ex, x	22		x(a) [mm]	0,0	Wx(a)[cm3]=	12.319,9
			1	x(b) [mm]		Wx(b)[cm3]=	12.319,9
Vers.0508	94/Piringer		- 1	x(u) [mm]		Wx(u)[cm3]=	9.678,8

Querschni	tt/cross sec	ction: P	0-1'	***************************************			
Bez.	by[mm]	hx[mm]	ex[mm]	A=b.h[cm2]	A*ex[cm3]	A*ex*ex[cm4]	Jx(o)[cm4]
webs	26	584	0	151,84	0	0	43155
lower L	143	19	-269,5	27,17	-732	19734	8
upper L	193	44	262	84,92	2225	58292	137
upper pl	610	9,5	296,75	57,95	1720	51031	4
				0,00	0	0	0
				0,00	0	0	0
				0,00	0	0	0
b		ex(s)[cm]	9,98	321,88	3212	129057	43304
	ex, x	H(tot)[mm]	593,5	A[cm2]	i(x) [cm] 20,88	Jx(s)[cm4]=	140.303
ā	A '	Note:				Jx(s)[m4]=	0,001403028
	_			x(o) [mm]	301,5	Wx(o)[cm3]=	-6.956,0
0				x(a) [mm]	0,0	Wx(a)[cm3]=	14.058,5
				x(b) [mm]		Wx(b)[cm3]=	14.058,5
Vers.0508	94/Piringer			x(u) [mm]	-292,0	Wx(u)[cm3]=	3.581,0

Querschni	tt/cross sec	tion: P	1'-2				
Bez.	by[mm]	hx[mm]	ex[mm]	A=b.h[cm2]	A*ex[cm3]	A*ex*ex[cm4]	Jx(o)[cm4]
webs	26	330	0	85,80	0	0	7786
lower L	26	203	-46,2	52,78	-244	1127	1813
upper L	26	203	46,2	52,78	244	1127	1813
				0,00	0	0	0
				0,00	0	0	0
				0,00	0	0	0
				0,00	0	0	0
		∋x(s)[cm]	0,00	191,36	0	2253	11411
		H(tot)[mm]	330,0	A[cm2]	i(x) [cm] 8,45	Jx(s)[cm4]=	13.664
hx —		Note:	•			Jx(s)[m4]=	0,000136645
- b				x(o) [mm]	165,0	Wx(o)[cm3]=	-828,2
٦	ex, x			x(a) [mm]	165,0	Wx(a)[cm3]=	-828,2
				x(b) [mm]	-165,0	Wx(b)[cm3]=	828,2
Vers.0508	94/Piringer			x(u) [mm]	-165,0	Wx(u)[cm3]=	828,2

Querschni	itt/cross sec	tion: P	2-3'				
Bez.	by[mm]	hx[mm]	ex[mm]	A=b.h[cm2]	A*ex[cm3]	A*ex*ex[cm4]	Jx(o)[cm4]
webs	26	381	0	99,06	0	0	11983
lower L	22	243	-140,9	53,46	-753	10613	2631
upper L	22	243	140,9	53,46	753	10613	2631
				0,00	0	0	0
				0,00	0	0	0
				0,00	0	0	0
				0,00	0	0	0
b		ex(s)[cm]	0,00	205,98	0	21227	17244
	ex. x	H(tot)[mm]	524,8	A[cm2]	i(x) [cm] 13,67	Jx(s)[cm4]=	38.471
a	A '	Note:				Jx(s)[m4]=	0,000384709
	_ [x(o) [mm]	262,4	Wx(o)[cm3]=	-1.466,1
0	$\rightarrow \rightarrow \rightarrow$		l l	x(a) [mm]	190,5	Wx(a)[cm3]=	-2.019,5
				x(b) [mm]	-190,5	Wx(b)[cm3]=	2.019,5
Vers.0508	94/Piringer			x(u) [mm]		Wx(u)[cm3]=	1.466,1

Querschni	itt/cross sec	ction: P:	3'-4				
Bez.	by[mm]	hx[mm]	ex[mm]	A=b.h[cm2]	A*ex[cm3]	A*ex*ex[cm4]	Jx(o)[cm4]
webs	0	0	0	0,00	0	0	0
lower L	22	243	-53,6	53,46	-287	1536	2631
upper L	22	243	53,6	53,46	287	1536	2631
				0,00	0	0	0
				0,00	0	0	0
				0,00	0	0	0
				0,00	0	0	0
		ex(s)[cm]	0,00	106,92	0	3072	5261
		H(tot)[mm]	350,2	A[cm2]	i(x) [cm] 8,83	Jx(s)[cm4]=	8.333
hx -		Note:	•			Jx(s)[m4]=	8,33303E-05
b	A			x(o) [mm]	175,1	Wx(o)[cm3]=	-475,9
_	ex, x		1	x(a) [mm]	156,0	Wx(a)[cm3]=	-534,2
		٠.		x(b) [mm]		Wx(b)[cm3]=	534,2
Vers.0508	894/Piringer			x(u) [mm]	-175,1	Wx(u)[cm3]=	475,9

Bez.	by[mm]	hx[mm]	ex[mm]	A=b.h[cm2]	A*ex[cm3]	A*ex*ex[cm4]	Jx(o)[cm4]
webs	26	330	Ó	85,80	0	0	7786
lower L	19	143	-142,5	27,17	-387	5517	463
upper L	19	143	142,5	27,17	387	5517	463
				0,00	0	0	C
				0,00	0	0	0
				0,00	0	0	0
				0,00	0	0	C
b —		ex(s)[cm]	0,00	140,14	0	11034	8712
ii	AX. X	H(tot)[mm]	428,0	A[cm2]	i(x) [cm] 11,87	Jx(s)[cm4]=	19.747
ā	A '	Note:				Jx(s)[m4]=	0,000197468
	_ [x(o) [mm]	214,0	Wx(o)[cm3]=	-922,7
0			1	x(a) [mm]	165,0	Wx(a)[cm3]=	-1.196,8
			1	x(b) [mm]		Wx(b)[cm3]=	1.196,8
Vers.0508	94/Piringer			x(u) [mm]		Wx(u)[cm3]=	922,7

Querschni	itt/cross sec	ction: P	5'-6				
Bez.	by[mm]	hx[mm]	ex[mm]	A=b.h[cm2]	A*ex[cm3]	A*ex*ex[cm4]	Jx(o)[cm4]
webs	0	0	0	0,00	0	0	0
lower L	20	206	-45,1	41,20	-186	838	1457
upper L	20	206	45,1	41,20	186	838	1457
				0,00	0	0	0
				0,00	0	0	0
				0,00	0	0	0
				0,00	0	0	0
		ex(s)[cm]	0,00	82,40	0	1676	2914
		H(tot)[mm]	296,2	A[cm2]	i(x) [cm] 7,46	Jx(s)[cm4]=	4.590
hx -		Note:				Jx(s)[m4]=	4,58996E-05
b				x(o) [mm]	148,1	Wx(o)[cm3]=	-309,9
~	ex, x	12		x(a) [mm]		Wx(a)[cm3]=	-350,4
				x(b) [mm]	-131,0	Wx(b)[cm3]=	350,4
Vers.0508	94/Piringer			x(u) [mm]	-148,1	Wx(u)[cm3]=	309,9

Querschni	tt/cross sec	ction: P	6-7'				
Bez.	by[mm]	hx[mm]	ex[mm]	A=b.h[cm2]	A*ex[cm3]	A*ex*ex[cm4]	Jx(o)[cm4
webs	26	254	0	66,04	0	0	3551
lower L	19	243	-111,8	46,17	-516	5771	2272
upper L	19	243	111,8	46,17	516	5771	2272
				0,00	0	0	(
				0,00	0	0	
				0,00	0	0	
				0,00	0	0	
b ==		ex(s)[cm]	0,00	158,38	0	11542	809-
a -	AY Y	H(tot)[mm]	466,6	A[cm2]	i(x) [cm] 11,13	Jx(s)[cm4]=	19.63
u	•	Note:	•			Jx(s)[m4]=	0,00019636
	_			x(o) [mm]	233,3	Wx(o)[cm3]=	-841,
0		1		x(a) [mm]	127,0	Wx(a)[cm3]=	-1.546,
		0.00	- 1	x(b) [mm]	-127,0	Wx(b)[cm3]=	1.546,
Vers.0508	94/Piringer			x(u) [mm]		Wx(u)[cm3]=	841,

Bez.	by[mm]	hx[mm]	ex[mm]	A=b.h[cm2]	A*ex[cm3]	A*ex*ex[cm4]	Jx(o)[cm4]
webs	0	0	0	0,00	0	0	0
lower L	19	169	-29,7	32,11	-95	283	764
upper L	19	169	29,7	32,11	95	283	764
				0,00	0	0	0
				0,00	0	0	0
				0,00	0	0	0
				0,00	0	0	0
		ex(s)[cm]	0,00	64,22	0	566	1528
		H(tot)[mm]	228,4	A[cm2]	i(x) [cm] 5,71	Jx(s)[cm4]=	2.095
hx		Note:				Jx(s)[m4]=	2,09497E-05
b				x(o) [mm]	114,2	Wx(o)[cm3]=	-183,4
	ex, x		1	x(a) [mm]	93,0	Wx(a)[cm3]=	-225,3
	JA, A			x(b) [mm]		Wx(b)[cm3]=	225,3
Vers 0508	94/Piringer			x(u) [mm]		Wx(u)[cm3]=	183,4

Autor/Author

22.10.96 Datum/Date

Seite/Page No.

Änderung/Revis.

Auftrag/Order No. 20-007

4.54878M ELEMENTS

				 1 7				 i				
Elem.	1	K	Gr Nr	 Eteni	ı	K	Gr Nr	ê Ten	١	K	GNr	
1	4	2	4	19	20	21	3	37	11	26	13	
ź	2	3	ų	20	21	22	3	38	26	13	12	
5	3	4	5.	21	22	23	3	39	13	28	11	
4	4	5	6	22	23	24	3	40	28	15	10	
2	153	6	7	23	24	25	2	41	2	16	17	
6	6	7	2	24	25	26	2	42	3	17	17	
7	7	8	9	25	26	27	1	43	4	12	17	
8	8	9	9	26	27	28	1	44	2	19	10	
ø,	8	' 0	8	27	1	16	10	45	6	r _o	٨٦	
4D	10	11	7	28	16	3	11	46	7	21	17	
11	11	12	6	29	3	12	12	47	2	22	17	
12	12	13	5	30	12	-	13	48	9	23	15	
13	13	14	4	31	5	20	14	49	10	24	15	
14	14	15	4	32	20	7	15	20	1/1	25	17	
15	16	17	1	33	7	22	16	51	12	36	17	
16	17	18	1	34	22	9	16	52	13	27	47	
17	18	19	2	35	9	24	15	53	14	28	17	
18	19	20	2	36	24	11	14					

5. ELECTRONIC COMPUTATION

On the following pages C/16 to C/31 the fellowing load cases are computed: LC1 ... total load: 100 lux over full spou LC2 ... centric load; 100 lor/ulengthe 33m in widdle of goan LC3 ... excentric load 100 km/n on left half of spran On pages C/32 to C/56 load combinations are investigated to get the most unfavourable forces for fatique check:

COMBINATION 304 Dead load + either

COMBINATION 301 Dead load 27,5 lw/m=1 main grades COMBINATION 302 Contrictraffic load 42 hr/ms COMBINATION 303 Total traffic load 42 law / w

> traffic load centric traffic load excentric traffic boad total THEFT

Whatever gives the most influence. Combination 304 can be used to estimate effect of fatigue loading.

The program used is a German product, distributor and producer: Ing. DWBAL Am tell was 2 D-93464 Tiefenbach The proposur is a fruite element framework propram (2D and 3D). It is a very common product in Germany and often approved.

The results are demonstrated prophically on propes C/58, C/59 - deflection under unit loads,

on pages C/60 to C/62 - normal forces max/ unin values.

Ou pages c/63 is given the result and comprarison.

PLANUNGSGESELLSCHAFT FÜR STAHL- UND MASCHINENBAU SEITE: C/16 Erzherzog Karl Straße 129a A-1221 Wien BLATT: 1

POSITION: TRUSS1 - TRUSS1

PROJEKT: TURKMEN - TURKMEN 1996.10.23 INHALT

I	NHALTSVERZEICHNIS CONTENTS		BLATT
Si	trukturdaten STEPCTUREL PATA		2
-	Struktur-Kenngroessen STRUCTURES		2
	Knoten-Koordinaten COORDINATES		2
	MAXIO	•	2
			3
-	Traegheitsmomente Moments /seroip		3
-	Querschnittsflaechen . Coss section		3
-	Querschnittsflaechen		4
7	Auflagerdaten BEARING		5
В	elastungsdaten LOAD DATA		5
E:	rgebnisse Lastfaelle - Th. I. Ordnung. LOAD.CAS	€.	7
	Lastfall-Verzeichnis LOND S		7
	Schnittgroessen stabbezogen . Torces		7
			1 1
	Auflagerkraefte und -Momente.		14
-	Knoten-Verformungen DETORMATIONS		14

Programmsystem RSTAB : Ebene/raeumliche Stabwerke

nach FEM Version 4.61

Programm-Entwicklung : Ing.-Software Dlubal GmbH

Am Zellweg 2 D-93464 Tiefenbach Telefon 09673/1775 o. 1776 Telefax 09673/1770 PLANUNGSGESELLSCHAFT FÜR STAHL- UND MASCHINENBAU

Erzherzog Karl Straße 129a

A-1221 Wien

SEITE: C/17 BLATT: 2 BLATT:

POSITION: TRUSS1 - TRUSS1

PROJEKT: TURKMEN - TURKMEN 1996.10.23 STRUKTURDATEN

STRUKTUR-KENNGROESSEN STRUCTURAL DATA ______ Anzahl der - Knoten : 28
- Materialien : 1
- Querschnitte : 17
- Stabendgelenktypen : 0
- Stabteilungstypen : 0
- Staebe : 53 Stabwerktyp: 2-Dimensional Anmerkung: Main girder / 1 plane - Auflager .

KNOTEN-KOORDINATEN GOORDINATES

======				
Knoten- Nr.	Koordinaten- system	Pol- Knoten	Knoten- X(m)	Koordinaten Y (m) Z (m)
1	Kartesisch	0	-33.068	0.000
1 2 3 4 5 6 7	Kartesisch	0	-28.344	0.000
3	Kartesisch	0	-23.620	0.000
4	Kartesisch	0	-18.896	0.000
5	Kartesisch	0	-14.172	0.000
6	Kartesisch	0	-9.448	0.000
7	Kartesisch	0	-4.724	0.000
8	Kartesisch	0	0.000	0.000
9	Kartesisch	0	4.724	0.000
10	Kartesisch	0	9.448	0.000
11	Kartesisch	0	14.172	0.000
12	Kartesisch	0 0 0 0 0 0 0 0 0 0	18.896	0.000
13	Kartesisch		23.620	0.000
14	Kartesisch	0	28.344	0.000
15	Kartesisch	0	33.068	0.000
16	Kartesisch	0	-28.344	-7.506
17	Kartesisch	0	-23.620	-7.916
18	Kartesisch	0	-18.896	-8.325
19	Kartesisch	0	-14.172	-8.735
20	Kartesisch	0	-9.448	-9.144
21	Kartesisch	0	-4.724	-9.144
22	Kartesisch	0	0.000	-9.144
23	Kartesisch	0	4.724	-9.144
24	Kartesisch	0	9.448	-9.144
25	Kartesisch	0	14.172	-8.735
26	Kartesisch	0	18.896	-8.325
27	Kartesisch	0	23.620	-7.916
28	Kartesisch	0	28.344	-7.506

A-1221 Wien

SEITE: C/18

POSITION: TRUSS1 - TRUSS1

PROJEKT : TURKMEN - TURKMEN 1996.10.23 STRUKTURDATEN ------

MATERIALDATEN

Materia Material- Nr. Bezeichnung			E-Modul (kN/cm^2)		Sp.Gewicht Waermezahl (kN/cm^3) (K^-1)		
1	Stahl	STEEL	2.100E+04	8.100E+03	7.850E-05	1.200E-05	

TRAEG	HEITS	MOMENTE SECOND	MOMENT BENDIN	9
Quers Nr.		Querschnitts- Bezeichnung	Torsion Biegung I-1 (cm^4) I-2 (cm^4)	Biegung) I-3 (cm ²)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	1 1 1 1 1 1 1 1 1 1 1 1 1 1	B 1'-2'-3' B 3'-4'-5' B 5'-6'-7' H 0-1-2 H 2-3 H 3-4 H 4-5 H 5-6 H 6-7 P 0-1' P 1'-2 P 2-3' P 3'-4 P 4-5' P 5'-6	124200.000 175300.000 187900.000 54500.000 90900.000 93700.000 134200.000 136500.000 142200.000 140300.000 13700.000 38500.000 8300.000 19700.000 4600.000	
16 17	1	P 6-7' CT	19600.000 2100.000	

QUERSCHNITTSFLAECHEN AREAS

Quers Nr.		Querschnitts- Bezeichnung	Normal A-1 (cm ²)	Schub A-2 (cm ²)	
1	1	B 1'-2'-3'	269.000		159.000
2	1	B 3'-4'-5'	380.000		159.000
3	1	B 5'-6'-7'	424.000		159.000
1 2 3 4	1	H 0-1-2	217.000		132.000
5	1	H 2-3	300.000		145.000
6	1	H 3-4	315.000		145.000
7	1	H 4-5	383.000		159.000
5 6 7 8 9	1	H 5-6	399.000		159.000
9	1	H 6-7	419.000		159.000
10	1	P · 0 - 1 '	322.000		152.000
11	1	P 1'-2	191.000		86.000
12	1	P 2-3'	206.000		99.000
13	1	P 3'-4	107.000		50.000
14	1	P 4-5'	140.000		86.000
15	1	P 5'-6	82.000		40.000
16	1	P 6-7'	158.000		66.000

A-1221 Wien

SEITE: C/19 BLATT:

POSITION: TRUSS1 - TRUSS1

PROJEKT : TURKMEN - TURKMEN 1996.10.23 STRUKTURDATEN

QUERSCHNITTSFLAECHEN

=====	====	=============		========	=========		
Quers	Mate	Querschnitts-	Normal	Schub	Schub		
Nr.	Nr.	Bezeichnung	$A-1 (cm^2)$	A-2 (cm ²)	$A-3 (cm^2)$		
17	1	CT	64.000		30.000		

STABDA	ATEN	PE	1=2	775	147			, CROSS SECTION	LENGT	4
=====		=====	===	====	SAIA		===		=======	=====
Stab	ELEMBUT	.K n	o t	e n	Dreh-	Quer	sch	Gelenktyp Stab-	Laenge	
Nr.		Anf	-	End	Winkel					Lage
		SIBEL		S.NP						
1	Balken		-	2		4	4		4.724	HORI
2	Balken	2	-	3		4	4 5 6 7		4.724	HORI
3	Balken	3	-	4		5	5		4.724	HORI
4	Balken	4	-	4 5 6		6	6		4.724	HORI
5 6	Balken	5	-	6		7	7		4.724	HORI
6	Balken		-	7		8	8		4.724	HORI
7	Balken	7	_	8		9	9		4.724	HORI
8	Balken	8	-	9		9	9		4.724	HORI
9	Balken	9	-	10		8	8		4.724	HORI
10	Balken	10	-	11		7	7		4.724	HORI
11	Balken	11	100	12		6	6		4.724	HORI
12	Balken	12	1000	13		5	5		4.724	HORI
13	Balken	13	-	14		4	8 9 9 8 7 6 5 4 4		4.724	HORI
14	Balken	14	-	15		4	4		4.724	HORI
15	Balken	16	-	17		1	1		4.742	ALLG
16	Balken	17	-	18		1	1		4.742	ALLG
17	Balken	18	-	19		2	2		4.742	ALLG
18	Balken	19	-	20		2	2		4.742	ALLG
19	Balken	20	8.7	21		3	3		4.724	HORI
20	Balken	21	0.77	22		3	3		4.724	HORI
21	Balken	22	-	23		3	3		4.724	HORI
22	Balken	23		24		2 3 3 3 3 2	3		4.724	HORI
23	Balken	24	_	25			1 1 2 2 3 3 3 3 2 2		4.742	ALLG
24	Balken	25	\ <u>-</u>	26		2	2		4.742	ALLG
25	Balken	26	-	27		1			4.742	ALLG
26	Balken	27	-	28		1	1		4.742	ALLG
27	Balken	1	-	16		10	10		8.869	ALLG
28 29	Balken Balken	16	_	3 18		11	11		8.869	ALLG
30		18	_	5		13	13		9.572 9.572	ALLG
31	Balken Balken	5		20		14	14		10.292	ALLG
	Balken		_	7						
32		20 7		22		15 16	15		10.292	ALLG ALLG
34	Balken	22	-	9		16	16		10.292	ALLG
35	Balken	9	-	24		15	15		10.292	
36	Balken	24	-	11		14	14		10.292	ALLG
37	Balken Balken	11	_	26		13	13		9.572	ALLG
38	Balken	26	_	13		12	12		9.572	ALLG
39	Balken	13	-	28		11	11		8.869	ALLG
40	Balken	28		15		10	10		8.869	ALLG
41	Balken	2		16		17	17		7.506	VERT

A-1221 Wien

SEITE: 920

POSITION: TRUSS1 - TRUSS1

PROJEKT : TURKMEN - TURKMEN 1996.10.23 STRUKTURDATEN ------

STABDATEN	Ī

=====										
Stab-	_	K n	o t	e n	Dreh-	Que	rsch	Gelenktyp Stab	Laenge	
Nr.	Stabtyp	Anf	-	End	Winkel	Anf-	-End	Anf-End Teilur	ng (m)	Lage
42	Balken	3	-	17		17	17		7.916	VERT
43	Balken		-	18		17	17		8.325	VERT
44	Balken	4 5	-	19		17	17		8.735	VERT
45	Balken	6	_	20		17	17		9.144	VERT
46	Balken	7	-	21		17	17		9.144	VERT
47	Balken	. 8	-	22		17	17		9.144	VERT
48	Balken	9		23		17	17		9.144	VERT
49	Balken	10	-	24		17	17		9.144	VERT
50	Balken	11	-	25		17	17		8.735	ΛΕDA
51	Balken	12	-	26		17	17		8.325	VERT
52	Balken	13	-	27		17	17		7.916	VERT
53	Balken	14	-	28		17	17		7.506	VERT

AUFLAGERDATEN BEARING RESTRAINTS

=====	======	=======	-======	=====		======	=========	===
					Stuetzung in			um
Nr.	Nr.	2			Z-Richtung			
1	1			J	J	N		
2	15			N	J	N		

LOADING LASTFALL-VERZEICHNIS - BELASTUNG

	Lastfall- Bezeichnung	Multiplikations- Faktor
1	Total loaded	1.000
2	Centric loaded	1.000
3	Excentric loaded	1.000

BELASTUNG LOAD CASES 1

LASTFALL 1 : Total loaded

LF-	Eigengewi	cht in R	ichtung		
Nr.	X	Y	Z	Anmerkung zum Last	fall
1				Uniformly, total 1	enath

SEITE: C/21 BLATT: 6

POSITION: TRUSS1 - TRUSS1

PROJEKT : TURKMEN - TURKMEN

1996.10.23

BELASTUNG

LF 1

STABLASTEN	LOAD	ON ELEMENT	-
------------	------	------------	---

22	St	ab-	Nr.	Lasta	rt	L	a	s	t	-	P	a	r	a	m	e	t	e	r	
Nr.	von	_	bis	Nr.	Richtung	P-1			Ε	- 2	2				A					В
1	1	-	14	1	Z	100.000			0.	00	00			0	. 00	00			0.	000

Lastart-Nr. 1: Linienlast Last-Parameter w/w

Einheit しんけ (kN/m)

P-1: Groesse der Linienlast

UNIFORM WAD

LENGTH

Bezugslaenge der Stablast

Richtung Director

Z: Global in Z-Richtung

Projizierte Stablaenge in X-Y-Ebene

BELASTUNG

LASTFALL 2 : Centric loaded

LF-	Eigengew	vicht in	Richtung
	100	-	and the same of th

Nr.	х	Y	Z	Anmerkung	zum	Lastfall
2	-	-	-	Uniformly,	33	m loaded length

STABLASTEN

	St	ab-	Nr.	Lasta:	rt	L	a	S	t	-	P	a	r	a	m	е	t	e	r	
Nr.	von	-	bis	Nr.	Richtung	P-1			I	- 2	2				A					В
1	4	-	4	4	Z	100.000		1(00.	00	00			2.	39	96			4.	72
2	5	_	10	1	Z	100.000			0.	00	00			0.	.00	00			0.	.00
3	11	_	11	4	Z	100.000		10	00.	00	00			0.	. 00	00			2.	32

La	start-Nr.	Last	-Parameter		Einheit
1:	Linienlast	P-1:	Groesse der	Linienlast	(kN/m)
4:	Trapezlast	P-1:	Randlast am	Anfangsknoten	(kN/m)
		P-2:	Randlast am	Endknoten	(kN/m)
		A :	Abstand P-1	vom Anfangsknoten	(m)
		B :	Abstand P-2	vom Anfangsknoten	(m)

Richtung

Bezugslaenge der Stablast

Z: Global in Z-Richtung Projizierte Stablaenge in X-Y-Ebene

BELASTUNG

LASTFALL 3 : Excentric loaded

PLANUNGSGESELLSCHAFT FÜR STAHL- UND MASCHINENBAU Erzherzog Karl Straße 129a POSITION: TRUSS1 - TRUSS1 BELASTUNG PROJEKT: TURKMEN - TURKMEN 1996.10.23 LF- Eigengewicht in Richtung
Nr. X Y Z Anmerkung zum Lastfall 3 Uniformly, 33 m loaded length STABLASTEN ______ Stab-Nr. Lastart Last-Parameter Nr. von - bis Nr. Richtung P-1 P-2 A B 1 1 - 7 1 Z 100.000 0.000 0.000 0.000 Lastart-Nr. Last-Parameter Einheit P-1: Groesse der Linienlast 1: Linienlast (kN/m)Richtung Bezugslaenge der Stablast Z: Global in Z-Richtung Projizierte Stablaenge in X-Y-Ebene ERGEBNISSE THEORIE I. ORDNUNG LASTFALL LF 1 2 3 LASTFALL-VERZEICHNIS ______ Lastfall-LF Bezeichnung Total loaded Centric loaded 2 3 Excentric loaded LF ... LOAD CASE SCHNITTGROESSEN STABBEZOGEN FORCES ON ELEMENT ______ Stab Knot- x Kraefte (kN) Momente (kNm) Nr. LF Nr. (m) N Q-2 Q-3 M-T M-2 M-3 1 0.00 1963.30 251.29 -201.18

-221.11

5.40 5.40

248.59

221.38

7.80 7.80

SHEAR

FORLE

217.47

-251.02

-223.81

-129.88

-188.00

-129.47

-133.68

-203.70

33.10

-131.81

-3.74

BENDING

MOMENT

-26.30

-0.81

4.72 1963.30

0.00 1043.38

0.00 1440.53

4.72 1440.53

4.72 1964.21

4.72 1044.10

1441.08

NORMAL

FORCE

2 0.00 1964.21

2 0.00 1044.10

1043.38

1

1

2

4.72

2 0.00

SEITE: 423 BLATT: 8

POSITION: TRUSS1 - TRUSS1
PROJEKT: TURKMEN - TURKMEN 1996.10.23

ERGEBNISSE LF
TH. I. ORDNUNG

Stab- Nr.	LF	Knot-		K r N	aefte (kN) Q-2 Q-3	Momente M-T M-2	(kNm) M-3
2	3	3	4.72	1441.08	-254.93	-220.27	
3	1	3	0.00	4431.78	277.50	-263.51	
		4	4.72	4431.78	-194.90	-68.42	
	2	3	0.00	2816.32	-3.25	-6.60	
		4	4.72	2816.32	-3.25	-21.97	
	3	3 .	0.00	3021.28	278.58	-260.34	
	020	4	4.72	3021.28	-193.82	-60.12	
4	1	4	0.00	4432.72	206.56	-72.47	
8		5	4.72	4432.72	-265.84	-212.51	
	2	4	0.00	2817.30	34.60	-26.21	
3		5	4.72	2817.30	-198.20	-133.74	
	3	4	0.00	3021.75	197.06	-62.12	
		5	4.72	3021.75	-275.34	-247.03	
5	1	5	0.00	5499.05	278.40	-243.42	
9		6	4.72	5499.05	-194.00	-44.04	
	2	5	0.00	3999.44	262.12	-179.30	
9		6	4.72	3999.44	-210.28	-56.83	
	3	5	0.00	3353.30	288.96	-257.72	
		6	4.72	3353.30	-183.44	-8.49	
6	1	6	0.00	5499.62	201.85	-46.68	
		7	4.72	5499.62	-270.55	-208.94	
	2	6	0.00	4000.03	202.00	-59.48	
		77	4.72	4000.03	-270.40	-221.04	
	3	6	0.00	3353.25	179.83	-8.28	
1000		7	4.72	3353.25	-292.57	-274.59	
7	1	7	0.00	5968.71	289.12	-225.38	
		8	4.72	5968.71	-183.28	24.60	
	2	7	0.00	4470.70	289.25	-236.98	
		8	4.72	4470.70	-183.15	13.60	
	3	7	0.00	2984.60	294.66	-265.09	
		8	4.72	2984.60	-177.74	11.09	
8	1	8	0.00	5968.71	183.28	24.60	
	-	9	4.72	5968.71	-289.12	-225.38	
	2	8	0.00	4470.70	183.15	13.60	
		9	4.72	4470.70	-289.25	-236.98	
	3	8	0.00	2984.11	5.55	13.50	
		9	4.72	2984.11	5.55	39.71	
9	1	9	0.00	5499.62	270.55	-208.94	
		10	4.72	5499.62	-201.85	-46.68	
	2	9	0.00	4000.03	270.40	-221.04	
		10	4.72	4000.03	-202.00	-59.48	
	3	9	0.00	2146.37	-22.03	65.65	
		1.0	4.72	2146.37	-22.03	-38.40	
10	1	10	0.00	5499.05	194.00	-44.04	
		11	4.72	5499.05	-278.40	-243.42	
	2	10	0.00	3999.44	210.28	-56.83	
	11-1	11	4.72	3999.44	-262.12	-179.30	
	3	10	0.00	2145.75	10.56	-35.56	

10.56

11 4.72 2145.75

14.31

A-1221 Wien

SEITE: C/2L BLATT:

POSITION: TRUSS1 - TRUSS1 ERGEBNISSE LF PROJEKT : TURKMEN - TURKMEN 1996.10.23 TH. I. ORDNUNG ------

CCUNTEMCOOPCERN CHARDEROCEN

SCHNI	TTGR	OESSEN	STAE	BEZOGE	N								
Stab-		Knot-		.===== К	===	a 6	====: e f t	e (k	:==== :N)	M O	m e	n t e	(kNm)
Nr.	LF		(m)	N			Q-2		2-3	M-T		M-2	M-3
11	1	11	0.00	4432.	72			265	.84		_	212.51	
			4.72	4432.				-206				-72.47	
	2		0.00	2817.					1.20			133.74	
_		12	4.72	2817.	30			-34	.60			-26.21	
	3	11	0.00	1410.	97			-9	.50			34.53	
		12 .	4.72	1410.	97			- 9	.50			-10.34	
12	1		0.00	4431.					.90			-68.42	
-			4.72	4431.				-277				263.51	
	2		0.00	2816.					3.25			-21.97	
			4.72	2816.					3.25			-6.60	
	3		0.00	1410.					09			-8.30	
			4.72	1410.					09			-3.17	
13	1		0.00	1964.					.02			203.70	
1			4.72	1964.					.38			133.68	
	2		0.00	1044.					7.80			33.10	
	3		4.72 0.00	1044. 523.		_			7.80 3.90	_	-	-3.74 16.57	
	3		4.72	523.					3.90			-1.87	
14	1		0.00	1963.		_			1.11			129.88	
14	_		4.72	1963.					1.29			201.18	
0	2		0.00	1043.					5.40			-0.81	
	-		4.72	1043.					5.40			-26.30	
	3		0.00	522.					2.70			-0.40	
	-		4.72	522.					2.70			-13.18	
15	1		0.00	-3415.					2.41			113.33	
		17	4.74	-3415.	17				2.41			87.78	
	2	16	0.00	-1970.	17			17	7.35			-45.85	
		17	4.74	-1970.	17			17	7.35			36.41	-
	3			-2428.				33	3.77			-90.36	
				-2428.					3.77			69.77	
16	1			-3411.					1.30			83 31	
				-3411.					1.30			29.73	
	2			-1968.					3.77			33.54	
9.				-1968.					3.77			-8.06	
	3			-2425.					7.30			66.74	
17	1			-2425.					7.30			32.14	
1 /	1			-5140. -5140.					3.27			-17.77	
1	2			-3558.		_			3.27 5.22	-		139.97 -55.15	
	2			-3558.					5.22			116.61	
	3			-3352.		_			9.73		-	7.01	
	5			-3352.					9.73			100.57	
18	1			-5135.					1.62			136.98	
10	-			-5135.					1.62			-12.92	
	2			-3553.					5.17			112.67	
	_			-3553.					5.17			-6.69	
	3			-3349.					1.54			99.55	
				-3349.					1.54			30.59	
19	1			-5862.					2.68			-34.20	

SEITE: 425 BLATT: 10

POSITION: TRUSS1 - TRUSS1
PROJEKT: TURKMEN - TURKMEN 1996.10.23

ERGEBNISSE LF
TH. I. ORDNUNG

tab-		Knot-	- x	Кr	a e	fte	(kN)	Momente	(kNm)
Nr.	LF		(m)	N	-	Q-2	Q-3		M-3
19		21	4.72	-5862.03			42.68	167.44	
	2	20		-4364.13			39.34	-34.14	
-	_	21		-4364.13			39.34	151.72	
	3	20		-3316.17			9.54	31.39	
20	1	21		-3316.17 -5862.48			9.54	76.47	
20	1	22		-5862.48			-19.41 -19.41	165.38 73.70	
-	2	21		-4364.57			-19.36	149.68	
	-	22		-4364.57			-19 36	58.23	
	3	21		-3315.94			-11.27	77.49	
		22		-3315.94			-11.27	24.26	
21	1	22		-5862.48			19.41	73.70	
105		23		-5862.48			19.41	165.38	
	2	22		-4364.57			19.36	58.23	
2.4	3	23		-4364.57			19.36	149.68	
	3	22		-2546.53 -2546.53			8.14 8.14	49.43 87.89	
22	1	23		-5862.03			-42.68	167.44	
22	_	24		-5862.03			-42.68	-34.20	
	2	23		-4364.13			-39.34	151.72	
		24		-4364.13			-39.34	-34.14	
	3	23		-2545.86			-33.14	90.97	
		24		-2545.86			-33.14	-65.59	
23	1	24		-5135.76			31.62	-12.92	
		25		-5135.76			31.62	136.98	
	2	24 25		-3553.62 -3553.62			25.17 25.17	-6.69	
	3	24		-1786.00			17.07	112.67 -43.52	-
	3	25		-1786.00			17.07	37.44	
24	1	25		-5140.79			-33.27	139.97	
250.0		26	4.74	-5140.79			-33.27	-17.77	
	2	25	0.00	-3558.05			-36.22	116.61	
		26		-3558.05			-36.22	-55.15	
	3	25		-1788.24			-13.54	39.40	
25	-	26		-1788.24			-13.54	-24.78	
25	1	26		-3411.54			11.30 11.30	29.73	
,	2	27 26		-3411.54 -1968.56			8.77	83.31 -8.06	
	2	27		-1968.56			8.77	33.54	
	3	26	0.00	-986.38			4.00	-2.40	
	_	27	4.74	-986.38			4.00	16.57	
26	1	27		-3415.17			-42.41	87.78	
		28		-3415.17			-42.41	-113.33	
	2	27		-1970.17			-17.35	36.41	
		28		-1970.17			-17.35	-45.85	li e V
	3	27	0.00	-987.14			-8.64	18.01	
22		28	4.74	-987.14			-8.64	-22.97	
27	1	1 16		-3631.73 -3631.73			-34.09 -34.09	201.18 -101.12	

PLANUNGSGESELLSCHAFT FÜR STAHL- UND MASCHINENBAU SEITE: 926 Erzherzog Karl Straße 129a A-1221 Wien BLATT: 11

POSITION: TRUSS1 - TRUSS1
PROJEKT: TURKMEN - TURKMEN 1996.10.23

ERGEBNISSE LF
TH. I. ORDNUNG -----

SCHNITTGROESSEN	CTABBETOCEN
	STAMBEZULFEN

Nr.	LF	Knot Nr.	- x	K r N	a e	fte Q-2	(kN) Q-3		(kNm) M-3
27	2			-1947.64 -1947.64			-7.05 -7.05	26.30 -36.20	
	3	1 16	0.00	-2655.91 -2655.91			-30.55 -30.55	188.00 -82.99	
28	1	16	0.00	2689.90			-2.03	9.18	
	2	16	0.00	1719.60			-2.03 -1.48	-8.85 7.19	
	3	16	0 00	1719.60 1828.27			-1.48 -1.29	-5.92 5.57	
29	1	3	8.87	1828.27 -2076.13			-1.29 -8.46	-5.88 46.80	
3	2	18		-2076.13 -1719.45			-8.46 -6.61	-34.22 31.22	
,	3	<u>18</u>		-1719.45			-6.61 -5.20	-32.06 31.32	
30	1	18 18		-1215.74 1386.90			-5.20 -1.68	-18.50 9.51	
	2	5 18	9.57	1386.90 1463.46			-1.68 -2.34	-6.61 11.10	
9	3	5	9.57	1463.46			-2.34	-11.25	
		18	0.00 9.57	640.06 640.06			-0.75 -0.75	4.76 -2.46	
31	1		0.00	-820.45 -820.45			-3.53 -3.53	21.32 -14.96	
	2	20	0.00	-985.88 -985.88			-4.94 -4.94	29.93 -20.94	
	3		0.00	-30.85 -30.85			-0.69 -0.69	7.16 0.07	
32	1		0.00	788.49 788.49			-0.57 -0.57	3.76 -2.12	
	2	30	0.00	792.10 792.10	•		-0.61 -0.61	3.84 -2.39	
	3	20	0.00	-80.34 -80.34			0.23	-0.50 1.86	
33	1	7	0.00	-228.84 -228.84			-1.34 -1.34	12.33 -1.50	
	2	7	0.00	-228.63 -228.63			-1.34 -1.34	11.58 -2.19	
	3	7	0.00	718.64			1.69	-6.55	
34	1	22	0.00	718.64			1.69	10.82	
8	2	22	0.00	-228.84 -228.63			1.34	12.33 -2.19	
39	3	22	0.00	-228.63 -947.48			1.34 3.03	11.58 -12.32	
35	1	9	0.00	-947.48 788.49			3.03 0.57	18.88 -2.12	
		24	10.29	788.49			0.57	3.76	

A-1221 Wien

BLATT: 12

POSITION: TRUSS1 - TRUSS1 ERGEBNISSE LF PROJEKT : TURKMEN - TURKMEN 1996.10.23 TH. I. ORDNUNG

SCHNITTGROESSEN STABBEZOGEN

Stab- Nr.			- x (m)		e (kN) Q-3		
35	2	24	10 29	792.10	 0.61	3.84	
55	3	9	0.00	868.82	0.80	-3.98	
	-		10.29	868.82	0.80	4.27	
36	1		0.00	-820.45	3.53	-14.96	
	700		10.29	-820.45	3.53	21.32	
34	2		0.00	-985.88	4.94	-20.94	
			10.29	-985.88	4.94	29.93	
100	3	24	0.00	-789.60	2.84	-15.03	
			10.29	-789 60	2 84	14.16	
37	1	11	0.00	1386.90	1.68	-6.61	
29		26	9.57	1386.90	 1.68	9.51	
	2	11	0.00	1463.46	2.34	-11.25	
33		26	9.57	1463.46	2.34	11.10	
	3	11	0.00	746.85	0.93	-4.16	
		26	9.57	746.85	0.93	4.75	
38	1	26		-2076.13	8.46	-34.22	
		13		-2076.13	8.46	46.80	
	2	26		-1719.45	6.61	-32.06	
	3	13 26	0.00	-1719.45 -860.38	6.61 3.26	31.22 -15.72	
	٥	13	9.57	-860.38	3.26	15.48	
39	1	13	0.00	2689.90	2.03	-8.85	
33	-	28	8.87	2689.90	2.03	9.18	
	2	13	0.00	1719.60	1.48	-5.92	
	_	28	8.87	1719.60	1.48	7.19	
	3	13	0.00	861.63	0.74	-2.97	
	7977	28	8.87	861.63	0.74	3.60	
40	1	28	0.00	-3631.73	34.09	-101.12	
		15		-3631.73	34.09	201.18	
	2	28		-1947.64	7.05	-36.20	
		15		-1947.64	7.05	26.30	
	3	28	0.00		3.53	-18.13	
		15	8.87	-975.83	3.53	13.18	
41	1	2	0.00	442.49	-0.91	3.81	
		16	7.51	442.49	-0.91	-3.03	
	2	2	0.00	2.40	-0.72	2.94	
		16	7.51	2.40	-0.72	-2.45	
	3	2	0.00	441.28	-0.55	2.34	
12	1	16	7.51	441.28 54.54	-0.55	-1.80	_
42	T	17	0.00	54.54	-1.09 -1.09	4.15 -4.47	
	2	3	0.00	26.57	-0.69	2.55	
	2	17	7.92	26.57	-0.69	-2.87	
	3	3	0.00	41.67	 -0.75	2.87	
	3	17	7.92	41.67	-0.75	-3.03	
43	1	4	0.00	401.46	 -0.94	4.04	
	-	18	8.32	401.46	-0.94	-3.78	
	2	4	0.00	37.85	-0.98	4.24	
	9555	18		37.85	-0.98	-3.92	

12 0.00

10.58

A-1221 Wien

SEITE: 428

POSITION: TRUSS1 - TRUSS1 ERGEBNISSE LF PROJEKT : TURKMEN - TURKMEN 1996.10.23 TH. I. ORDNUNG ------

Stab-		Knot-	- x	.======== K r a	efte	(kN)	Momente (k	(MM)
Nr.	LF	Nr.	(m)	N N	Q-2	Q-3	M-T M-2	M-3
43	3	4	0.00	390.88		-0.47	2.00	
		18	8.32	390.88		-0.47	-1.87	
44	1	5	0.00	66.15		-0.68	2.98	
	_	19	8.73	66.15		-0.68	-2.98	
	2	5	0.00	62.29		-0.95	4.38	
9	3		8.73	62.29		-0.95	-3.94	
	3	5	0.00	35.09		-0.24	1.08	
45	1	19 6	8.73	35.09 395.85		-0.24 -0.57	-1.02 2.54	
45	1	20	9.14	395.85		-0.57	-2.56	
10	2	6	0.00	412.28		-0.58	2.65	
	2	20	9.14	412.28		-0.58	-2.67	
	3	6	0.00	363.27		0.05	-0.21	
	•	20	9.14	363.27		0.05	0.22	
46	1	7	0.00	62.09		-0.44	1.99	
885	1523	21	9.14	62.09		-0.44	-2.06	
	2	7	0.00	58.70		-0.44	1.97	
		21	9.14	58.70		-0.44	-2.04	
	3	7	0.00	20.81		0.23	-1.09	
		21_	9.14	20.81		0.23	1.02	
47	1	8	0.00	366.57		0.00	0.00	
-		22	9.14	366.57		0.00	0.00	
	2	8	0.00	366.31		0.00	0.00	
		22	9.14	366.31		0.00	0.00	
	3	8 22	0.00 9.14	183.28		0.48	-2.41	
48	1	9	0.00	183.28 62.09		0.44	2.02	
40	1	23	9.14	62.09		0.44	2.06	
	2	9	0.00	58.70		0.44	-1.97	
	2		9.14	58.70		0.44	2.04	
	3	9	0.00	41.28		0.67	-3.08	
	:25	23	9.14	41.28		0.67	3.08	
49	1	10	0.00	395.85		0.57	-2.64	
		24	9.14	395.85		0.57	2.56	
	2	10	0.00	412.28		0.58	-2.65	
		24	9.14	412.28		0.58	2.67	
	3	10	0.00	32.58		0.62	-2.85	
77 407 1447		24	9.14	32.58		0.62	2.78	
50	1	11	0.00	66.15		0.68	-2.98	
		25	8.73	66.15		0.68	2.98	
	2	11	0.00	62.29		0.95	-4.38	
		25	8.73	62.29		0.95	3.94	_
	3	11	0.00	31.06		0.44	-1.90	
E 1	1	25	8.73	31.06		0.44	1.97	
51	1	12 26	0.00	401.46 401.46		0.94	-4.04	
	2	12	0.00	37.85		0.94	3.78	
	2	26	8.32	37.85		0.98	3.92	

0.47

-2.04

SEITE: 929 BLATT: 14

POSITION: TRUSS1 - TRUSS1
PROJEKT: TURKMEN - TURKMEN 1996.10.23

ERGEBNISSE LF
TH. I. ORDNUNG

Stab- Nr.	LF	Nr.	(m)	Kra N	е	f t Q-2	(kN) Q-3	Momente (kNm $M-T$ $M-2$ $M-$
51	3	26	8.32	10.58			 0.47	1.91
52	1	13 27	0.00 7.92	54.54 54.54			1.09	-4.15 4.47
	2	13 27	0.00	26.57 26.57			0.69	-2.55 2.87
	3	13 27	0.00	12.87 12.87			0.34	-1.28 1.44
53	1	14 28	0.00	442.49			0.91	-3.81 3.03
	2	14 28	0.00	2.40			0.72	-2.94 2.45
	3	14 28	0.00	1.20			0.36	-1.47 1.23

AUFLA	GERKR	AEFTE UND -MOMENT	E BEARING	4 torces		
Knot-		Auflagerkrae	fte (kN)	Auflag	germomente	(kNm)
Nr.	LF	P-X P-Y	P-Z	M-X	M-Y	M-Z
			VERTICAL			
1	1	0.000	3306.800		0.000	
	2	0.000	1650.000		0.000	
	3	0.000	2480.100		0.000	
15	1	0.000	3306.800		0.000	
	2	0.000	1650.000		0.000	
	3	0.000	826.700		0.000	
Summe	n Lag	erkraefte/Belastu	ng Sum of #	ORCES		
Lage	1	0.000	6613.600			
Bela		0.000	6613.599			
Lage	2	0.000	3300.000			
Bela		0.000	3300.000			
Lage	3	0.000	3306.800			
Bela		0.000	3306.800			

KNOTEN-VERFORMUNGEN DEFLECTIONS

Knot-	ė.	Verschi	ebungen	(mm)	Verdre	hungen (mra	ad)
Nr.	LF	u-X	u-Y	u-Z	Phi-X	Phi-Y	Phi-Z
1	1	0.00000		0.00000		-6.11581	
	2	0.00000		0.00000	9	-3.02338	
	3	0.00000		0.0000		-4.37482	
2	1	2.03525		28.12351	19	-5.27212	
	2	1.08162		16.04209	0	-3.58288	
	3	1.49332		19.01755		-3.25086	
3	1	4.07144		50.14172		-4.55913	
	2	2.16398		32.16973	3	-2.97701	
		Heri gentre		Trendica	L	+) ROT	ALL OLD

HINENBAU SEITE: 25 21 Wien BLATT: 15

POSITION: TRUSS1 - TRUSS1
PROJEKT: TURKMEN - TURKMEN 1996.10.23

ERGEBNISSE LF
TH. I. ORDNUNG

KNOTEN-VERFORMUNGEN

			niebungen (mm)	Verdrehungen (mrad)
Nr.	LF	u-X	u-Y u-Z	Phi-X Phi-Y Phi-2
	3	2.98722	31.88672	-2.84116
4	1	7.39457	72.57640	-4.06411
	2	4.27577	46.90534	-3.33054
	3	5.25270	45.92493	-2.20424
5	1	10.56013	87.86678	-3.02020
		6.28771	61.62553	-3.06650
	2	7.41064	52.65278	-1.45065
6	1	13.78996	101.90000	-2.31220
	2	R 63675	74.32631	-1.92824
	3	9.38018	59.25085	-0.56454
7	1	16.89059	109.40000	-1.35377
	2	10.89193	80.48259	-1.17501
	3	11.27071	58.24970	0.16938
8	1	20.09507	114.40000	0.0000
J	2	13.29216	85.01307	0.0000
	ร	12.87307	57.18059	1.10222
9	1	23.29954	109.40000	1.35377
	2	15.69238	80.48259	1.17501
	3	14.47518	51.16304	1.52315
10	1	26.40018	101.90000	2.31220
10	2	17.94756	74.32631	1.92824
	3	15.68528	42.68151	1.74766
11	1	29.63000	87.86678	
11	2	20.29660	61.62553	3.02020
	3	16.94557	35.21400	3.06650
12	1	32.79557		1.56955
12	2	22.30854	72.57640	4.06411
	3	17.95320	46.90534	3.33054
13			26.65147	1.85987
13	1 2	36.11870	50.14172	4.55913
	3	24.42033	32.16973	2.97701
1.4		19.01085	18.25500	1.71797
14	1	38.15489	28.12351	5.27212
	2	25.50270	16.04209	3.58288
1.5	3	19.55315	9.10596	2.02126
15	1	40.19014	0.00000	6.11581
	2	26.58431	0.00000	3.02338
	3	20.09507	0.00000	1.74099
16	1	31.81660	25.65231	-4.60984
	2	20.67231	16.02866	-3.17241
	3	19.76153	16.55305	-2.79425
17	1	31.03671	49.82050	-4.84210
	2	20.39964	32.01321	-3.25826
Townson or	3	19.02531	31.64130	-2.98143
18	1	29.91730	70.08968	-3.81457
	2	20.01013	46.67087	-3.02669
	3	18.00910	43.50378	-2.08263
19	1	28.35671	87.43686	-3.02759
	2	19.15076	61.22067	-2.63088
	3	16.78376	52.42474	-1.38983

A-1221 Wien

SEITE: 931 BLATT: 16

POSITION: TRUSS1 - TRUSS1

PROJEKT : TURKMEN - TURKMEN 1996.10.23

ERGEBNISSE LF TH. I. ORDNUNG

KNOTEN-VERFORMUNGEN

=====	====	=========		
Knot-		Verso	chiebungen (mm)	Verdrehungen (mrad)
Nr.	LF			Phi-X Phi-Y Phi-Z
20	1	26.31549	99.23918	-2.22862
	2	17.92315	71.52135	-1.94834
	3	15.16293	56.77934	-0.55170
21	1 2 3	23.20540	109.00000	-1.43108
	2	15.60777	80.08321	-1.24455
		13.40354	58.10811	0.09392
22	1	20.09507	111.90000	0.00000
	2	13.29216	82.52085	0.00000
	3	11.64427	55.93360	0.70300
23	1	16.98474	109.00000	1.43108
	2	10.97654	80.08321	1.24455
	3	10.29321	50.88218	1.52500
24	1 2	13.87465	99.23918	2.22862
	2	8.66116	71.52135	1.94834
	3	8.94251	42.45984	1.67692
25	1	11.83343	87.43686	3.02759
	2	7.43355	61.22067	2.63088
	3	8.52213	35.01212	1.63777
26	1 2 3	10.27284	70.08968	3.81457
	2	F.57418	4€.67087	3.02669
		8.18687	26.58591	1.73194
27	1 2 3	9.15343	49.82050	4.84210
	2	6.18467	32.01321	3.25826
		8.08367	18.17920	1.86067
28	1 2	8.37354	25.65231	4.60984
	2	5.91200	16.02866	3.17241
	3	8.04000	9.09926	1.81559
Maxi	1 2	40.19014	114.40000	6.11581
	2	26.58431	85.01307	3.58288
	3	20.09507	59.25085	2.02126
Mini	1 2	0.0000	0.00000	-6.11581
	2	0.00000	0.00000	-3.58288
	3	0.00000	0.00000	-4.37482

PLANUNGSGESELLSCHAFT FÜR STAHL- UND MASCHINENBAU SEITE: C/32 Erzherzog Karl Straße 129a A-1221 Wien BLATT: 1

POSITION: TRUSS1 - TRUSS1

PROJEKT: TURKMEN - TURKMEN 1996.10.23 INHALT

I	NHALTSVERZEICHNIS	BLATT
E	rgebnisse LF-Kombinationen . UAD ComBINATIONS .	2
_	LF-Kombination-Verzeichnis	2
-	Kombinationskriterien	2
-	Max/Min/Zug Schnittgroessen stabbezogen	2
-	May/Min/Zug Auflagerkraefte und -Momente	20
-	Max/Min Knoten-Verformungen	21

Programmsystem RSTAB : Ebene/raeumliche Stabwerke

nach FEM Version 4.61

Programm-Entwicklung: Ing.-Software Dlubal GmbH

Am Zellweg 2

D-93464 Tiefenbach Telefon 09673/1775 o. 1776

Telefax 09673/1770

A-1221 Wien

SEITE: 433

POSITION: TRUSS1 - TRUSS1

PROJEKT: TURKMEN - TURKMEN 1996.10.23 LF-UEBERLAGERUNG

ERGEBNISSE LFK

ERGEBNISSE LF-UEBERLAGERUNG

LF-KOMBINATION LFK 301 302 303 304

LF-KOMBINATION-VERZEICHNIS

LFK	LF-Kombination- Bezeichnung	Kombinations- Kriterium
301 302 303 304	Dead load Single engine load centric 2 engines (bridge length) Max/min combination	0.275*1/s 0.42*2/s 0.42*1/s 0.275*1/s + 0.42*2 oder 0.42*3 oder 0.42*

KOMBINATIONSKRITERIEN

LFK		LF	LF-Bezeichnung	Ueber- lagerung	Wichtungs- Faktor
301		1:	Total loaded	Staendig	0.275
302		2:	Centric loaded	Staendig	0.420
303 304		1:	Total loaded	Staendig	0.420
304		1:	Total loaded	Staendig	0.275
	plus	2:	Centric loaded	Eventuell	0.420
	oder	3:	Excentric loaded	Eventuell	0.420
	oder	1:	Total loaded	Eventuell	0.420

MAX/MIN/ZUG SCHNITTGROESSEN STABBEZOGEN

Stab.		X	erium:	1.00 m	efte(kN)	Momente	(kNm)
	LFK	(m)			Q-2 Q-3	M-T M-2	M-3
1	301		*MAX	539.91*	69.11	-55.32	
		0.00	*MIN *MAX *MIN	539.91* LF 1 LF 1	69.11	-55.32	
	302	0.00	*MAX	438.22*	2.27	-11.05	
		0.00	*MIN	438.22*	2.27	-11.05	
			*MAX *MIN	LF 2 LF 2			
	303	0.00	*MAX	824.58*	105.54	-84.49	
		0.00	*MIN *MAX *MIN	824.58* LF 1 LF 1	105.54	-84.49	
	304	0.00	*MAX	1364.49*	174.65	-139.82	
		0.00	*MIN *MAX	539.91* LF 1 1	69.11	-55.32	

SEITE: C/34 BLATT: 3

POSITION: TRUSS1 - TRUSS1
PROJEKT: TURKMEN - TURKMEN 1996.10.23

ERGEBNISSE LFK
LF-UEBERLAGERUNG

ab- r. LFK				efte(kN) Q-2 Q-3	
1 304		*MIN	LF 1		
2 301	0.00	*MAX	540.16*	60.88	-36.76
	0.00	*MIN	540.16*	60.88	-36.76
		*MAX	LF 1		
		*MIN	LF 1		
302		*MAX	438.52*	3.28	-1.57
	0.00	*MIN	438.52*	3.28	-1.57
		*MAX *MIN	LF 2 LF 2		
303	0.00	*MAX	824.97*	92.98	-56.15
303		*MIN	824.97*	92.98	-56.15
		*MAX	LF 1		=======================================
		*MIN	LF 1		
304		*MAX	1365.12*	153.86	-92.91
	0.00	*MIN	540.16*	60.88	-36.76
		*MAX	LF 1	1	
3 301	0 00	*MIN	LF 1 1218.74*	76.31	-72.46
3 301		*MIN	1218.74*	76.31	-72.46
	0.00	*MAX	LF 1	70.51	72.40
		*MIN	LF 1		
302	0.00	*MAX	1182.86*	-1.37	-2.77
	0.00	*MIN	1182.86*	-1.37	-2.77
		*MAX	LF 2		
202	0.00	*MIN	LF 2	116 55	110.67
303		*MAX *MIN	1861.35* 1861.35*	116.55 116.55	-110.67 -110.67
	0.00	*MAX	LF 1	110.55	-110.67
		*MIN	LF 1		
304	0.00	*MAX	3080.09*	192.86	-183.14
	0.00	*MIN	1218.74*	76.31	-72.46
		*MAX	LF 1	1	
		*MIN	LF 1		
4 301	0.00	*MAX	1219.00*	56.80	-19.93
	0.00	*MIN	1219.00*	56.80	-19.93
		*MAX *MIN	LF 1 LF 1		
302	0.00	*MAX	1183.27*	14.53	-11.01
302	0.00		1183.27*	14.53	-11.01
	0.00	*MAX	LF 2	22100	11.01
		*MIN	LF 2		
303	0.00	*MAX	1861.74*	86.75	-30.44
	0.00	*MIN	1861.74*	86.75	-30.44
		*MAX	LF 1		
201	0.00	*MIN	LF 1	440 55	
304	0.00	*MAX	3080.74*	143.56	-50.36
	0.00	*MIN	1219.00* LF 1	56.80	-19.93
		*MIN	LF 1 LF 1	1	

SEITE: C/35

POSITION: TRUSS1 - TRUSS1 ERGEBNISSE LFK PROJEKT: TURKMEN - TURKMEN 1996.10.23 LF-UEBERLAGERUNG

	MAX/N	MIN/Z	UG SCI	INITTG	ROESSEN	1 S	TZ	ABE	EZ	200	GEI	1 	====	=:	==:	==:	==:	==:	===	
•	Stab-	LFK	x (m)		K	r	a	е				(kN)	M M-			е		t v-		(kNm) M-3
							-							-					<u>-</u> 	
	5	301	0.00	*MAX	1512.2	24*						76.56				,	-6	5.	94	
			0.00	*MIN	1512.2	24*						76.56					-6	5.	94	

Stab- Nr.	LFK	x (m)		Kra N		t e (kN) Q-3	$M \circ m \in n \in M$	(kNm) M-3
5	301		*MAX *MIN *MAX *MIN	1512.24* 1512.24* LF 1 LF 1		76.56 76.56	-66.94 -66.94	
	302	0.00	*MAX *MIN *MAX *MIN	1679.77* 1679.77* LF 2 LF 2		110.09 110.09	-75.30 -75.30	
	303		*MAX *MIN *MAX *MIN	2309.60* 2309.60* LF 1 LF 1		116.93 116.93	-102.24 -102.24	
	304		*MAX *MIN *MAX *MIN	3821.84* 1512.24* LF 1 LF 1	1	193.49 76.56	-169.18 -66.94	
6	301		*MAX *MIN *MAX *MIN	1512.40* 1512.40* LF 1 LF 1		55.51 55.51	-12.84 -12.84	
	302		*MAX *MIN *MAX *MIN	1680.01* 1680.01* LF 2 LF 2		84.84 84.84	-24.98 -24.98	
	303		*MAX *MIN *MAX *MIN	2309.84* 2309.84* LF 1 LF 1		84.78 84.78	-19.61 -19.61	
	304		*MAX *MIN *MAX *MIN	3822.24* 1512.40* LF 1 LF 1	1	140.29 55.51	-32.44 -12.84	
7	301		*MAX *MIN *MAX *MIN	1641.39* 1641.39* LF 1 LF 1		79.51 79.51	-61.98 -61.98	
	302	0.00	*MAX *MIN *MAX *MIN	1877.69* 1877.69* LF 2 LF 2		121.48 121.48	-99.53 -99.53	
	303	0.00	*MAX	2506.86* 2506.86* LF 1 LF 1		121.43 121.43	-94.66 -94.66	
	304	0.00	*MAX	4148.25* 1641.39* LF 1 LF 1	1	200.94 79.51	-156.64 -61.98	
8	301	0.00	*MAX	1641.39*		50.40	6.76	

SEITE: 436 BLATT: 5

Stab- Nr.		x (m)		Kra N	efte	e (kN) Q-3	Momente M-T M-2	(kNm) M-3
8	301	0.00	*MIN *MAX	1641.39* LF 1		50.40	6.76	
			*MIN	LF 1 LF 1				
	302	0.00	*MAX	1877.69*		76.93	5.71	
			MIN	1877.69		76.93	5.71	
			*MAX	LF 2				
	303	0 00	*MIN	LF 2 2506.86*		76.98	10.33	
	303		*MIN	2506.86*		76.98	10.33	
			*MAX	LF 1				
			*MIN	LF 1				
	304		*MAX	4148.25*		127.38	17.09	
		0.00	*MIN *MAX	1641.39* LF 1	1	50.40	6.76	
			*MIN	LF 1	*			
9	301	0.00	*MAX	1512.40*		74.40	-57.46	
		0.00	*MIN	1512.40*		74.40	-57.46	
			*MAX	LF 1				
	302	0 00	*MIN *MAX	LF 1 1680.01*		113.57	-92.84	
	302			1680.01*		113.57	-92.84	
			*MAX	LF 2				
	-		*MIN	LF 2				
	303		*MAX	2309.84*		113.63	-87.75	
		0.00	*MIN *MAX	2309.84* LF 1		113.63	-87.75	ĭ.
			*MIN	LF 1				
	304		*MAX			188.03	-145.21	
		0.00		1512.40*	240	74.40	-57.46	
			*MAX *MIN	LF 1 LF 1	1			
1.0	301	0.00		1512.24*		53.35	-12.11	
	501	0.00		1512.24*		53.35	-12.11	
			*MAX	LF 1				
	200		*MIN	LF 1		20.20		
	302	0.00	*MAX *MIN	1679.77* 1679.77*		88.32 88.32	-23.87	
		0.00	*MAX	LF 2		00.32	-23.87	
			*MIN	LF 2				
	303	0.00	*MAX	2309.60*		81.48	-18.50	
		0.00		2309.60*		81.48	-18.50	
			*MAX	LF 1				
	304	0.00	*MIN *MAX	LF 1 3821.84*		134.83	-30.61	
	J 0 4	0.00		1512.24*		53.35	-12.11	
		. 400.05050	*MAX	LF 1	1			
			*MIN	LF 1		55 44		
11	301		*MAX	1219.00*		73.11 73.11	-58.44 -58.44	
		0.00	*MIN	1219.00*		13.11	-50.44	

SEITE: C/37 BLATT: 6

POSITION: TRUSS1 - TRUSS1

PROJEKT: TURKMEN - TURKMEN 1996.10.23 LF-UEBERLAGERUNG

ERGEBNISSE LFK

11	301			N	Q-2 Q-3	M-T M-2	M-3
			*MAX				
	301		*MIN	LF 1			
	302	0.00	*MAX	1183.27*	83.24	-56.17	
		0.00		1183.27*	83.24	-56.17	
			*MAX	LF 2			
			*MIN	LF 2			
	303		*MAX	1861.74*	111.65	-89.25	
		0.00	*MIN	1861.74* LF 1	111.65	-89.25	
			*MIN	LF 1			
	304	0.00	*MAX	3080.74*	184.76	-147.69	
			MIN	1219.00	73.11	-58.44	
			*MAX	LF 1	1		
	-		*MIN	LF 1			
12	301		*MAX	1218.74*	53.60	-18.82	
		0.00	*MIN	1218.74*	53.60	-18.82	
			*MAX *MIN	LF 1 LF 1			
	302	0 00	*MAX		1.37	-9.23	
	302		*MIN	1182.86*	1.37	-9.23	
		288	*MAX	LF 2	=135		
			*MIN	LF 2			
	303		*MAX	1861.35*	81.86	-28.74	
		0.00	*MIN	1861.35*	81.86	-28.74	
			*MAX *MIN	LF 1 LF 1			
	304	0 00	*MAX	3080.09*	135.46	-47.56	
	304		*MIN	1218.74*	53.60	-18.82	
		3233	*MAX		1		
			*MIN	LF 1			
1.3	301		*MAX	540.16*	69.03	-56.02	
		0.00	*MIN	540.16*	69.03	-56.02	
			*MAX *MIN	LF 1 LF 1			
	302	0.00		438.52*	-3.28	13.90	
	302	0.00		438.52*	-3.28	13.90	
		54 5 5	*MAX	LF 2	7.07.5	35053	
			*MIN	LF 2			
	303		*MAX	824.97*	105.43	-85.56	
		0.00	*MIN	824.97*	105.43	-85.56	
			*MAX	LF 1			
	204	0 00	*MIN	LF 1 1365.12*	174.46	_1/1 [7	
	304	0.00	*MAX *MIN	540.16*	69.03	-141.57 -56.02	
		0.00	*MAX		1	30.02	
			*MIN	LF 1			
14	301	0.00	*MAX	539.91*	60.80	-35.72	
		0.00	*MIN	539.91*	60.80	-35.72	
			*MAX	LF 1			

SEITE: 38 BLATT: 7

Stab- Nr.		x (m)		K r a N	efte(kN) Q-2 Q-3	Momente M-T M-2	(kNm) M-3
14	301		*MIN	LF 1			
	302	0.00		438.22*	-2.27	-0.34	
				438.22*	-2.27	-0.34	
			*MAX	LF 2			
			*MIN	LF 2			
	303			824.58*	92.86	-54.55	
		0.00		824.58*	92.86	-54.55	
			*MAX	LF 1			
			*MIN	T.F 1			
	304			1364.49*	153.67	-90.27	
		0.00	*MIN	539.91*	60.80	-35.72	
			*MAX	LF 1	1		
	201			LF 1			
15	301			-939.17*	11.66	-31.16	
		0.00		-939.17*	11.66	-31.16	
			*MAX	LF 1			
	302	0 00	*MIN	LF 1 -827.47*	7.29	-10 36	
	302			-827.47*	7.29	-19.26 -19.26	
		0.00	*MAX	LF 2	7.29	-19.26	
			*MJ.N	LF 2			
	303	0.00		-1434.37*	17.81	-47.60	
	505			-1434.37*	17.81	-47.60	
			*MAX	LF 1		1	
			*MIN	LF 1			
	304	0.00		-939.17*	11.66	-31.16	
				-2373.54*	29.48	-78.76	
			*MAX	LF 1			
			*MIN	LF 1	1		
16	301	0.00	*MAX	-938.17*	-3.11	22.91	
		0.00	*MIN		-3.11	22 91	
				LF 1			
			*MIN	LF 1			
	302		*MAX	-826.80*	-3.68	14.09	
		0.00		-826.80*	-3.68	14.09	
			*MAX	LF 2			
			*MIN	LF 2			
	303	0.00			-4.75	34.99	
		0.00			-4.75	34.99	
			*MAX	LF 1			
	204	0 00	*MIN	LF 1	2 11	22.01	
	304	0.00		-938.17*	-3.11	22.91	
		0.00			-7.85	57.90	
			*MAX	LF 1 LF 1	1		
17	301	0 00	*MIN		0.15	-4.89	
1/	201	0.00		-1413.72* -1413.72*	9.15	-4.89	
		0.00	*MAX	LF 1	9.15	-4.09	
			*MIN	LF 1			

A-1221 Wien

SEITE: C/39 BLATT: 8

POSITION: TRUSS1 - TRUSS1 ERGEBNISSE LFK 1996.10.23 PROJEKT : TURKMEN - TURKMEN LF-UEBERLAGERUNG

	LFK	x (m)		Kra N		Momente M-T M-2	
17	302	0.00	*MAX	-1494.38*			
	502			-1494.38*		-23.16	
				LF 2			
				LF 2			
	303	0.00	*MAX	-2159.13*	13.97	-7.46	
		0.00.		-2159.13*	13.97	-7.46	
				LF 1			
				LF 1			
	304			-1413.72*	9 1.5	-4.89	
		0.00		-3572.85*	23.12	-12.35	
				LF 1	•		
1.0	301	0 00		LF 1 -1412.33*	0.60	27 67	
10	301			-1412.33*	-8.69 -8.69	37.67 37.67	
		0.00		LF 1	-0.09	37.67	
				LF 1			
	302	0.00		-1492.52*	-10.57	47.32	
	502			-1492.52*	-10.57	47.32	
				LF 2	17-3-3-3-0		
				LF 2			17.00
	303	0.00	*MAX	-2157.02*	-13.28	57.53	
		0.00	*MIN	-2157.02*	-13.28	57.53	
			*MAX				
				LF 1			
	304			-1412.33*	-8.69	37.67	
		0.00		-3569.35*	-21.97	95.20	
				LF 1 LF 1	1		
10	301	0 00		-1612.06*	11.74	-9.41	
19	301			-1612.06*	11.74	-9.41	
		0.00		LF 1	11.71	5.41	
				LF 1			
	302	0.00		-1832.93*	16.52	-14.34	
		0.00		-1832.93*	16.52	-14.34	
			*MAX	LF 2			
			*MIN	LF 2			
	303	0.00		-2462.05*	17.93	-14.37	
		0.00		-2462.05*	17.93	-14.37	
			*MAX	LF 1			
			*MIN	LF 1	** **		
	304			-1612.06*	11.74	-9.41	
		0.00		-4074.11*	29.67	-23.77	
		79	*MAX	LF 1	1		
20	301	0 00	*MIN	LF 1 -1612.18*	-5.34	AE AD	_
20	201	0.00		-1612.18*	-5.34	45.48 45.48	
		0.00	*MAX	LF 1	3.34	43.40	
			*MIN	LF 1			
	302	0.00		-1833.12*	-8.13	62.87	
					0.10	02.07	

SEITE: 46 BLATT: / 9

POSITION: TRUSS1 - TRUSS1

ERGEBNISSE LFK PROJEKT: TURKMEN - TURKMEN 1996.10.23 LF-UEBERLAGERUNG -----

	x		Кr	aeft	e (kN)	Momente	(kNm)
LFK	(m)		N	Q-2	Q-3	M-T M-2	M-3
302	0.00	*MIN -1	833.12*		-8.13	62.87	
	E Santana		F 2				
303						69.46	
					-8.15	69.46	
304	0 00				-5 24	15 10	
304							
	0.00				13.43	114.94	
				1			
301	0.00				5.34	20.27	
					5.34	20.27	
		*MAX L	F 1				
302							
	0.00				8.13	24.46	
202	2 00			(0 15	30 OF	
303							
	0.00				0.13	30.93	
304	0.00			(5.34	20.27	
0000000					13.49	51.22	
		*MAX L	F 1				
				_1			
301							
	0.00				-11.74	46.05	
303	0 00				-16 52	63 73	
302							
	0.00				10.52	03.72	
303	0.00				-17.93	70.32	
					-17.93	70.32	
		*MAX L	F 1				
		THE RESERVE AND THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN T	The second second				
304							
	0.00				-29.67	116.37	
201	0 00				0 60	_2 ==	
20T							
	0.00				0.09	-3.55	
302	0.00				10.57	-2.81	
	0.00	-MIIM -I	492.52		10.5/	-2.81	
	302 303 304 301 302	LFK (m) 302 0.00 303 0.00 304 0.00 301 0.00 302 0.00 304 0.00 301 0.00 301 0.00 301 0.00 301 0.00 301 0.00 301 0.00 301 0.00 301 0.00 301 0.00 301 0.00 301 0.00 301 0.00 301 0.00 301 0.00 301 0.00	LFK (m) 302 0.00 *MIN -1:	LFK (m) N 302 0.00 *MIN -1833.12*	LFK (m) N Q-2 302 0.00 *MIN -1833.12* *MAX LF 2 *MIN LF 2 303 0.00 *MAX -2462.24* 0.00 *MIN -2462.24* *MAX LF 1 *MIN LF 1 304 0.00 *MAX -1612.18* 0.00 *MIN -4074.42* *MAX LF 1 *MIN LF 1 301 0.00 *MAX -1612.18* 0.00 *MIN -1612.18* 0.00 *MIN -1612.18* 0.00 *MIN -1833.12* 0.00 *MIN -1833.12* 0.00 *MIN -1833.12* 0.00 *MIN -1833.12* 0.00 *MIN -2462.24* 0.00 *MIN -2462.24* 0.00 *MIN -2462.24* 0.00 *MIN -4074.42* *MAX LF 1 *MIN LF 1 304 0.00 *MAX -1612.18* 0.00 *MIN -4074.42* *MAX LF 1 *MIN LF 1 304 0.00 *MAX -1612.06* 0.00 *MIN -1832.93* 0.00 *MIN -1832.93* 0.00 *MAX -1832.93* 0.00 *MAX -1832.93* 0.00 *MAX -1612.06* 0.00 *MIN -1832.93* 0.00 *MAX -1612.06* 0.00 *MIN -1832.93* 0.00 *MAX -1612.06* 0.00 *MIN -14074.11* *MIN LF 1 304 0.00 *MAX -1612.06* 0.00 *MIN -2462.05* 0.00 *MIN -4074.11* *MAX LF 1 *MIN LF 1 304 0.00 *MAX -1612.06* 0.00 *MIN -4074.11* *MAX LF 1 *MIN LF 1 301 0.00 *MAX -1412.33* 0.00 *MAX -1412.33* 0.00 *MIN -1412.33*	LFK (m) N Q-2 Q-3 302 0.00 *MIN -1833.12* -8.13 *MAX LF 2 *MIN LF 2 303 0.00 *MAX -2462.24* -8.15 *MAX LF 1 *MIN LF 1 304 0.00 *MAX -1612.18* -5.34 0.00 *MIN -1612.18* 5.34 *MAX LF 1 *MIN LF 1 301 0.00 *MAX -1612.18* 5.34 *MAX LF 1 *MIN LF 1 302 0.00 *MAX -1833.12* 8.13 *MAX LF 2 *MIN LF 2 303 0.00 *MAX -1833.12* 8.13 *MAX LF 2 *MIN LF 2 304 0.00 *MAX -1612.18* 5.34 *MAX LF 1 *MIN LF 1 305 0.00 *MAX -1833.12* 8.13 *MAX LF 2 *MIN LF 2 306 0.00 *MAX -1612.18* 5.34 *MAX LF 2 *MIN LF 1 307 0.00 *MAX -2462.24* 8.15 *MAX LF 1 *MIN LF 1 308 0.00 *MAX -1612.18* 5.34 0.00 *MIN -4074.42* 13.49 *MAX LF 1 *MIN LF 1 301 0.00 *MAX -1612.06* -11.74 0.00 *MAX -1612.06* -11.74 0.00 *MAX -1832.93* -16.52 0.00 *MAX -1832.93* -16.52 0.00 *MAX -1832.93* -16.52 *MAX LF 1 *MIN LF 1 302 0.00 *MAX -2462.05* -17.93 0.00 *MAX -2462.05* -17.93 0.00 *MAX -1612.06* -11.74 0.00 *MIN -4074.11* -29.67 *MAX LF 1 *MIN LF 1 304 0.00 *MAX -1612.06* -11.74 0.00 *MIN -4074.11* -29.67 *MAX LF 1 *MIN LF 1 307 0.00 *MAX -1612.06* -11.74 0.00 *MIN -4074.11* -29.67 *MAX LF 1 *MIN LF 1 308 0.00 *MAX -1412.33* 8.69 0.00 *MAX -1412.33* 8.69	LFK (m) N Q-2 Q-3 M-T M-2 302 0.00 *MIN -1833.12*

SEITE: 941 BLATT: 10

POSITION: TRUSS1 - TRUSS1

PROJEKT: TURKMEN - TURKMEN 1996.10.23 LF-UEBERLAGERUNG

ERGEBNISSE LFK

tab- Nr.	LFK	(m)				efte(kN) Q-2 Q-3	Momente M-T M-2	
23	302			LF LF				
	303	0.00	*MIN *MAX	-2157. -2157. LF LF		13.28 13.28		
	304	0.00	*MAX *MIN *MAX	-1412. -3569. LF	35*	8.69 21.97		
24	301		*MAX *MIN *MAX	-1413. -1413. LF LF		-9.15 -9.15		
	302		*MAX *MIN *MAX	-1494. -1494. LF LF	38*	-15.21 -15.21		
	303		*MIN	-2159. -2159. LF LF		-13.97 -13.97		
	304			-1413. -3572. LF LF	85*	-9.15 -23.12		
25	301			-938. -938. LF LF	17*	3.11 3.11		
	302		*MAX *MIN *MAX *MIN	-826. -826. LF LF		3.68 3.68		
	303	0.00	*MAX	-1432. -1432. LF LF		4.75 4.75		
	304	0.00	*MAX	-938. -2371. LF LF		3.11 7.85		
26	301	0.00	*MAX *MIN *MAX *MIN	-939. -939. LF LF		-11.66 -11.66		
	302	0.00	*MAX *MIN *MAX	-827. -827. LF		-7.29 -7.29		

SEITE: C/42 BLATT: 11

POSITION: TRUSS1 - TRUSS1

PROJEKT: TURKMEN - TURKMEN 1996.10.23 LF-UEBERLAGERUNG

ERGEBNISSE LFK

	LFK	x (m)			efte (kN) Q-2 Q-3	Momente M-T M-2	
26	302		*MIN	LF 2			
	303			-1434.37*	-17.81	36.87	
				-1434.37*		36.87	
				LF 1			
	304	0.00	*MAX	-939.17*	-11.66	24.14	
		0.00	*MIN	-2373.54*	-29.48	61.00	
			*MAX	LF 1			
			*MTN	LF 1			
27	301			-998.73*	-9.37	55.32	
		0.00		-998.73*	-9.37	55.32	
			*MAX	LF 1			
			*MIN	LF 1			
	302			-818.01*	-2.96	11.05	
		0.00			-2.96	11.05	
			*MAX				
	303	0 00	*MIN	LF 2 -1525.33*	-14.32	84.49	
	303			-1525.33*	-14.32	84.49	
		0.00	*MAX		-14.52	04.49	
			*MIN	LF 1			
	304	0.00		-998.73*	-9.37	55.32	
				-2524.06*	-23.69	139.82	
			*MAX	LF 1			
			*MIN	LF 1	1		
28	301	0.00	*MAX	739.72*	-0.56	2.52	
		0.00	*MIN	739.72*	-0.56	2.52	
			*MAX	LF 1			
			*MIN	LF 1			
	302			722.23*	-0.62	3.02	
		0.00		722.23*	-0.62	3.02	
			*MAX				
		0.00	*MIN	LF 2	2.05	2.05	
	303	0.00	*MAX	1129.76*	-0.85	3.85	
		0.00		1129.76*	-0.85	3.85	
			*MAX *MIN	LF 1 LF 1			
	304	0.00	*MAX	1869.48*	-1.41	6.38	
	304	0.00	*MIN	739.72*	-0.56	2.52	
		0.00	*MAX	LF 1	1	2.52	
			*MIN	LF 1	-		
29	301	0.00	*MAX	-570.93*	-2.33	12.87	
2,7	501	0.00	*MIN	-570.93*	-2.33	12.87	
			*MAX	LF 1	2.55	12.37	
			*MIN	LF 1			
	302	0.00	*MAX	-722.17*	-2.78	13.11	
	v=0.200	0.00	*MIN	-722.17*	-2.78	13.11	
			*MAX	LF 2	Water 124 Telephone		
			*MIN	LF 2			

SEITE: C/43 BLATT: 12

		x (m)					Momente M-T M-2	(kNm) M-3
29	303			-871.97*		-3.56	19.66	
		0.00		-871.97*		-3.56	19.66	
			*MAX *MIN	LF 1 LF 1				
	304	0.00	*MAX	-570.93*		-2.33	12.87	
	501			-1442.91*		-5.88	32.53	
			*MAX	LF 1				
			*MIN	LF 1	1			
30	301		*MAX	381.40*		-0.46	2.61	
		0.00	*MIN	381.40* LF 1		-0.46	2.61	
			*MIN	LF 1				
	302	0.00	*MAX	614.65*		-0.98	4.66	
			MIN	614.65		-0.98	4.66	
			*MAX	LF 2				
	202	0 00	*MIN	LF 2				
	303		*MAX *MIN	582.50* 582.50*		-0.71 -0.71	3.99	
		0.00	*MAX	LF 1		-0.71	3.99	
			*MIN	LF 1				
	304	0.00	*MAX	996.05*	***	-1.44	7.28	
		0.00		381.40*		-0.46	2.61	
			*MAX	LF 1	2			
21	301	0 00	*MIN	LF 1 -225.62*		-0.97	5.86	
31	301	0.00	*MIN	-225.62*		-0.97	5.86	
		0.00	*MAX	LF 1		0.57	3.00	
			*MIN	LF 1				
	302		*MAX	-414.07*		-2.08	12.57	
		0.00	*MIN	-414.07*		-2.08	12.57	
			*MAX *MIN	LF 2 LF 2				
	303	0.00	*MAX	-344.59*		-1.48	8.96	
	505	0.00	*MIN	-344.59*		-1.48	8.96	
			*MAX	LF 1		54.53	27.2	
			*MIN	LF 1				
	304	0.00	*MAX	-225.62*		-0.97	5.86	
		0.00	*MIN	-639.69*		-3.05	18.43	
			*MAX *MIN	LF 1 LF 1	2			
32	301	0.00	*MAX	216.83*		-0.16	1.03	_
-	501	0.00	*MIN	216.83*		-0.16	1.03	
		resoning tests	*MAX	LF 1		553107 (535) 78 0	HELITO (T. ET)	
			*MIN	LF 1				
	302	0.00	*MAX	332.68*		-0.25	1.61	
		0.00	*MIN	332.68*		-0.25	1.61	
			*MAX *MIN	LF 2 LF 2				
			4444					

SEITE: 44 BLATT: 13

tab- Nr.	LFK	x (m)		Kra N	efte Q-2	(kN) Q-3		(kNm) M-3
32	303	0.00	*MIN *MAX *MIN	331.16* LF 1 LF 1		-0.24	1.58	
	304	0.00	*MAX	549.52*		-0.41	2.65	
				183.09*		-0.06	0.82	
		9.	*MAX	LF 1 LF 1	2			
2.2	201	0 00	*MIN		3	0.07	2 22	
33	301		*MAX *MIN	-62.93* -62.93*		-0.37 -0.37	3.39 3.39	
		0 1111	*MAX	LF 1		-0, 1,	3.35	
				LF 1				
	302			-96.03*		-0.56	4.87	
		0.00		-96.03*		-0.56	4.87	
			*MAX *MIN	LF 2 LF 2				
	303	0.00		-96.11*		-0.56	5.18	
				-96.11*		-0.56	5.18	
			*MAX	LF 1				
	201	0.00	*MIN	LF 1		2 24		
	304		*MAX *MIN	238.90* -159.04*		0.34	0.64 8.57	
		0.00	*MAX	LF 1	3	-0.93	0.37	
			*MIN	LF 1	1			
34	301		*MAX	-62.93*		0.37	-0.41	
		0.00	*MIN	-62.93*		0.37	-0.41	
			*MAX *MIN	LF 1 LF 1				
	302	0 00	*MAX	-96.03*		0.56	-0.92	
	302			-96.03*		0.56	-0.92	
			*MAX	LF 2		77/2007 5		
			*MIN	LF 2				
	303		*MAX	-96.11*		0.56	-0.63	
		0.00	*MIN *MAX	-96.11* LF 1		0.56	-0.63	
			*MIN	LF 1				
	304	0.00	*MAX	-62.93*		0.37	-0.41	
		0.00	*MIN	-460.87*		1.64	-5.59	
			*MAX	LF 1	2			
35	301	0.00	*MIN	LF 1 216.83*	3	0.16	-0.58	
33	301	0.00	*MIN	216.83*		0.16	-0.58	
		0.00	*MAX	LF 1		0.10	0.00	
			*MIN	LF 1				
	302	0.00	*MAX	332.68*		0.25	-1.00	
		0.00	*MIN	332.68*		0.25	-1.00	
			*MAX *MIN	LF 2 LF 2				
	303	0.00	*MAX	331.16*		0.24	-0.89	
		0.00		331.16*		0.24	-0.89	

SEITE: 45 BLATT: 14

tab- Nr.	LFK	x (m)		Krā N	efte Q-2	(kN) Q-3	Momente M-T M-2	(kNm) M-3
35	303		*MAX *MIN	LF 1 LF 1				
	304	0.00	*MAX	581.74*		0.49	-2.25	
		0.00	*MIN	216.83*		0.16	-0.58	
			*MAX	LF 1	3			
	120212		*MIN	LF 1				
36	301		*MAX	-225.62*		0.97	-4.11	
		0.00	*MIN	-225.62*		0.97	-4.11	
			*MAX	UF 1 LF 1				
	302	0 00		-414.07*		2.08	-8.79	
	302		*MIN	-414.07*		2.08	-8.79	
		0.00	*MAX	LF 2		2.00	0.79	
			*MIN	LF 2				
	303	0.00	*MAX	-344.59*		1.48	-6.28	
		0.00	*MIN	-344.59*		1.48	-6.28	
			*MAX	LF 1				
			*MIN	LF 1				
	304		*MAX	-225.62*		0.97	-4.11	
		0.00	*MIN	-639.69*		3.05	-12.91	
			*MAX *MIN	LF 1 LF 1	2			
37	301	0 00	*MAX	381.40*	2	0.46	-1.82	
57	301		*MIN	381.40*		0.46	-1.82	
		0.00	*MAX	LF 1		0.40	1.02	
			*MIN	LF 1				
	302	0.00	*MAX	614.65*		0.98	-4.72	
		0.00	*MIN	614.65*		0.98	-4.72	
			*MAX	LF 2				
			*MIN	LF 2				
	303		*MAX	582.50*		0.71	-2.78	
		0.00	*MIN	582.50*		0.71	-2.78	
			*MAX *MIN	LF 1 LF 1				
	304	0.00	*MAX	996.05*		1.44	-6.54	
	301	0.00	*MIN	381.40*		0.46	-1.82	
			*MAX	LF 1	2		2.02	
			*MIN	LF 1				
38	301	0.00	*MAX	-570.93*		2.33	-9.41	
		0.00	*MIN	-570.93*		2.33	-9.41	
			*MAX	LF 1				
	-		*MIN	LF 1				
	302	0.00	*MAX	-722.17*		2.78	-13.47	
		0.00	*MIN	-722.17*		2.78	-13.47	
			*MAX	LF 2				
	303	0 00	*MIN	LF 2 -871.97*		3 5 6	-11 27	
	202	0.00	*MAX			3.56	-14.37	
		0.00	*MIN	-871.97*		3.56	-14.37	

SEITE: 46 BLATT: 15

Nr.		(m)				efte Q-2		Momente M-T M-2	(kNm) M-3
38	303			LF					
	304			-570.			2.33	-9.41	
		0.00		-1442.			5.88	-23.78	
			*MAX *MIN	LF LF		1			
39	301	0.00.		739.		1	0.56	-2.43	
	501	0.00	*MIN	739.	72*		0.56	-2.43	
			*MAX	LF	1				
			*MŢN	LF					
	302	0.00	*MAX	722.	23*		0.62	-2.49	
		0.00		722.			0.62	-2.49	
			*MAX *MIN	LF LF	2				
	303	0.00	*MAX				0.85	-3.72	
	505			1129.			0.85	-3.72	
			*MAX	LF	1				
			*MIN	LF					
	304			1869.			1.41	-6.15	
		0.00		739.		1	0.56	-2.43	
			*MAX *MIN	LF LF	1	1			
40	301	0.00		-998.	73*		9.37	-27.81	
			*MIN				9.37	-27.81	
			*MAX						
			*MIN	LF					
	302		*MAX	-818.			2.96	-15.21	
		0.00	*MAX				2.90	-15.21	
			*MIN	LF	2				
	303	0.00		-1525.			14.32	-42.47	
		0.00	*MIN	-1525.	33*		14.32	-42.47	
				LF	1				
	204	0 00	*MIN	LF	1 72+		0.07	07.01	
	304	0.00	*MAX	-998. -2524.			9.37	-27.81 -70.28	
		0.00	*MAX	LF	1		23.69	-70.20	
			*MIN	LF	ī	1			
41	301	0.00	*MAX	121.	68*		-0.25	1.05	
		0.00	*MIN	121.	68*		-0.25	1.05	
			*MAX	LF	1				
	200		*MIN	LF	1				
	302	0.00	*MAX		01*		-0.30	1.23	
		0.00	*MIN	LF	01* 2		-0.30	1.23	
			*MIN	LF	2				
	303	0.00	*MAX	185.			-0.38	1.60	
		0.00	*MIN	185.			-0.38	1.60	
			*MAX	LF	1				
			*MIN	LF	1				

SEITE: C/47 BLATT: 16

tab-		x				efte	0.701	Momente	(kNm)
Nr.	LFK	(m)		N	I 	Q-2	Q-3	M-T M-2	M-3
41	304			307.			-0.63	2.65	
		0.00		121.			-0.25	1.05	
			*MAX	LF LF		1			
42	301	0.00	*MAX	15.			-0.30	1.14	
	301	0.00.		15.			-0.30	1.14	
			*MAX	LF			7000		
			*MIN	LF	1				
	302		*MAX	11.			-0.29	1.07	
		0.00	*MIN	11.			-0.29	1.07	
			*MAX	LF					
	202	0 00		LF	2		2 15		
	303		*MAX	22.			-0.46	1.74	
		0.00	*MIN *MAX	22. LF			-0.46	1.74	
				LF	1				
	304	0.00	*MAX	37.	90*		-0.76	2.89	
	501		*MIN		.00*		-0.30	1.14	
			*MAX	LF		1			
			*MIN	LF	1				
43	301			110.			-0.26	1.11	
		0.00		110			-0.26	1.11	
			*MAX	LF	1				
	200	0 00	*MIN	LF	20+		0.41	1 70	
	302	0.00	*MAX *MIN	15	.90*		-0.41 -0.41	1.78 1.78	
		0.00	*MAX	LF			-0.41	1.78	
			*MIN	LF	2				
	303	0.00		168			-0.39	1.70	
		0.00		168			-0.39	1.70	
			*MAX	LF					
	-		*MIN	LF	1				
	304	0.00	*MAX		.01*		-0.65	2.81	
		0.00			.40*		-0.26	1.11	
			*MAX	LF	1	1			
11	301	0.00	*MIN	LF 10	.19*		-0.19	0.82	
44	201	0.00	*MIN		. 19*		-0.19	0.82	
		0.00	*MAX	LF	1		0.13	0.02	
			*MIN	LF	ī				
	302	0.00	*MAX		.16*		-0.40	1.84	
		0.00			.16*		-0.40	1.84	
			*MAX	LF	2				
		10	*MIN	LF	2			2 P 102/012	
	303	0.00	*MAX		.78*		-0.29	1.25	
		0.00			.78*		-0.29	1.25	
			*MAX *MIN	LF LF	1				
	304	0.00			.97*		-0.47	2.07	
	204	0.00	LILLY	40			0.4/	2.07	

PLANUNGSGESELLSCHAFT FÜR STAHL- UND MASCHINENBAU Erzherzog Karl Straße 129a A-1221 Wien Erzherzog Karl Straße 129a

SEITE: C/48

POSITION: TRUSS1 - TRUSS1 ERGEBNISSE LFK PROJEKT: TURKMEN - TURKMEN 1996.10.23 LF-UEBERLAGERUNG

		x (m)		Kra N	Q-2	(kN) Q-3	Momente (kNm $M-T$ $M-2$ $M-$
44	304	0.00	*MIN *MAX *MIN	18.19* LF 1 LF 1			0.82
45	301		*MAX	108.86* 108.86* LF 1 LF 1		-0.16 -0.16	0.73 0.73
	302	0.00	*MAX *MIN	173.16* 173.16* LF 2 LF 2		-0.24 -0.24	1.11
	303		*MAX	166.26* 166.26* LF 1 LF 1		-0.24 -0.24	1.11 1.11
	304		*MAX	282.01* 108.86* LF 1 LF 1		-0.40 -0.16	1.84 0.73
46	301		*MAX *MIN *MAX *MIN	17.08* 17.08* LF 1 LF 1		-0.12 -0.12	0.55 0.55
	302		*MAX *MIN *MAX *MIN	24.65* 24.65* LF 2 LF 2		-0.18 -0.18	0.83 0.83
	303		*MAX *MIN *MAX *MIN	26.08* 26.08* LF 1 LF 1		-0.19 -0.19	0.84 0.84
	304	0.00	*MAX	43.15* 17.08* LF 1 LF 1	1	-0.31 -0.12	1.38 0.55
47	301	0.00	*MAX	100.81* 100.81* LF 1 LF 1		0.00	0.00
	302	0.00	*MAX *MIN *MAX *MIN	153.85* 153.85* LF 2 LF 2		0.00	0.00
	303	0.00	*MAX *MIN *MAX *MIN	153.96* 153.96* LF 1 LF 1		0.00	0.00
	304	0.00	*MAX *MIN	254.76* 100.81*		0.00	0.00

SEITE: C/49 BLATT: 18

		x (m)						$M \circ m \circ n \circ kNm$ $M-T \qquad M-2 \qquad M-3$
47	304		*MAX *MIN			1		
48	301	0.00	*MAX	17 17 LF LF	1		0.12 0.12	-0.55 -0.55
	302	0.00	*MAX		.65* .65* 2		0.18 0.18	-0.83 -0.83
	303		*MAX *MIN *MAX	26 26 LF LF	.08* .08*		0.19	-0.84 -0.84
	304		*MAX *MIN *MAX *MIN	17	.08*		0.31	-1.38 -0.55
49	301		*MAX *MIN *MAX *MIN	108 108 LF LF	.86*		0.16 0.16	-0.73 -0.73
	302		*MAX *MIN *MAX	173 173 LF LF	.16* .16* 2		0.24 0.24	-1.11 -1.11
	303		*MAX *MIN *MAX *MIN	166 166 LF LF	1		0.24	-1.11 -1.11
	304		*MAX *MIN *MAX *MIN	282	.01*	2	0 40 0.16	-1.84 -0.73
50	301	0.00	*MAX *MIN *MAX *MIN		1.19* 1.19* 1		0.19	-0.82 -0.82
	302	0.00	*MAX *MIN *MAX *MIN		.16* .16* 2 2		0.40	-1.84 -1.84
	303		*MAX *MIN *MAX *MIN	27	7.78* 7.78* 1 1		0.29	-1.25 -1.25
	304	0.00	*MAX	45	.97* 1.19*	1	0.47	-2.07 -0.82

A-1221 Wien

SEITE: C/50 BLATT: 19

POSITION: TRUSS1 - TRUSS1 ERGEBNISSE LFK PROJEKT : TURKMEN - TURKMEN 1996.10.23 LF-UEBERLAGERUNG

				Kra	efte(kN)	Momente (kNm)
Nr.	LFK	(m)		N	Q-2 Q-3	M-T M-2 M-3
50	304		*MIN	LF 1		
51	301		*MAX	110.40*	0.26	-1.11
		0.00	*MIN	110.40*	0.26	-1.11
			*MAX	LF 1 LF 1		
	302	0 00	*MIN		0 41	1 70
	302		*MAX *MIN	15.90* 15.90*	0.41 0.41	-1.78 -1.78
		0.00	*MAX	LF 2	0.41	1.78
			*MIN	T.F 2		
	303	0.00	*MAX	168.61*	0.39	-1.70
		0.00	*MIN	168.61*	0.39	-1.70
			*MAX	LF 1		
	204	0.00	*MIN	LF 1	0.65	2.01
	304		*MAX *MIN	279.01* 110.40*	0.65 0.26	-2.81 -1.11
		0.00	*MAX	LF 1		-1.11
			*MIN	LF 1	-	
52	301	0.00	*MAX	15.00*	0.30	-1.14
		0.00	*MIN	15.00*	0.30	-1.14
			* M.~_X	LF 1		
	200	0 00	*MiN	LF 1	2.00	
	302	0.00	*MAX	11.16* 11.16*	0.29 0.29	-1.07
		0.00	*MIN *MAX	LF 2	0.29	-1.07
			*MIN	LF 2		
	303	0.00	*MAX	22.91*	0.46	-1.74
		0.00	*MIN	22.91*	0.46	-1.74
			*MAX	LF 1		
	201	0 00	*MIN	LF 1	0.76	2.00
	304		*MAX *MTN	37.90* 15.00*	0.76 0.30	-2.89
		0.00	*MAX			-1.14
			*MIN	LF 1	-	
53	301	0.00	*MAX	121.68*	0.25	-1.05
		0.00	*MIN	121.68*	0.25	-1.05
			*MAX	LF 1		
			*MIN	LF 1		
	302	0.00	*MAX	1.01*	0.30	-1.23
		0.00	*MIN	1.01*	0.30	-1.23
			*MAX *MIN	LF 2 LF 2		
	303	0.00	*MAX	185.84*	0.38	-1.60
		0.00	*MIN	185.84*	0.38	-1.60
		150 A 155 A 75	*MAX	LF 1	and and and	
			*MIN	LF 1		
	304	0.00	*MAX	307.53*	0.63	-2.65
		0.00	*MIN *MAX	121.68* LF 1	0.25	-1.05
			* IVI A Y	LF 1	1	

SEITE: C/57 BLATT: 20

POSITION: TRUSS1 - TRUSS1

PROJEKT : TURKMEN - TURKMEN 1996.10.23

ERGEBNISSE LFK LF-UEBERLAGERUNG -----

MAX/MIN/ZUG AUFLAGERKRAEFTE UND -MOMENTE

Nr.	LFK			P-X	P-Y P-Z	Auflagermomente (kNm) M-X M-Y M-Z
1	301				909.37	
		Min P-X		0.00*	909.37	0.00
		Max P-X				
		Min P-X				
	302	Max · P-X			693.00	
		Min P-X			693.00	0.00
		Max P-X				
	200	Min P-X				
	303	Max P-X		0.00*	1388.86	
		Min P-X			1388.86	0.00
		Max P-X				
	304	Min P-X Max P-X			000 27	0.00
	304	Min P-X			909.37 909.37	
		Max P-X			909.37	0.00
		Min P-X	LF	1		
	301	Max P-Z		0.00	909.37	* 0.00
	301	Min P-Z			909.37	- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
		Max P-Z			505.57	0.00
		Min P-Z	LF	1		
	302	Max P-Z		0.00	693.00	* 0.00
		Min P-Z			693.00	
		Max P-Z				
		Min P-Z	LF	2		
	303	Max P-Z			1388.86	0.00
		Min P-Z		0.00	1388.86	0.00
		Max P-Z				
		Min P-Z				
	304	Max P-Z		0.00	2298.23	
		Min P-Z			909.37	* 0.00
		Max P-Z			1	
	201	Min P-Z			200 00	
15	301	Max P-Z		0.00	909.37	
		Min P-Z		0.00	909.37	* 0.00
		Max P-Z				
	202	Min P-Z	LF		603.00	÷ 0.00
	302	Max P-Z Min P-Z		0.00	693.00 693.00	
			TE	0.00	693.00	* 0.00
		Max P-Z Min P-Z				
	303	Max P-Z	LI	0.00	1388.86	* 0.00
	303	Min P-Z		0.00	1388.86	
		Max P-Z	LF		1300.00	0.00
		Min P-Z				
	304	Max P-Z	111	0.00	2298.23	* 0.00
	504	Min P-Z		0.00	909.37	
		Max P-Z	LF		1	0.00
		Min P-Z				

SEITE: C/57 BLATT: 21

POSITION: TRUSS1 - TRUSS1 ERGEBNISSE LFK PROJEKT : TURKMEN - TURKMEN 1996.10.23 LF-UEBERLAGERUNG

MAX/MIN KNOTEN-VERFORMUNGEN

not	-		Versch	iebungen	(mm)	Verdrehungen (mrad) Phi-X Phi-Y Phi-Z
Nr.	LFK		u-X	u-Y	u-Z	Phi-X Phi-Y Phi-Z
1	301	Max	0.0000		0.0000	-1.6819
		Min			0.0000	-1.6819
	302	Max	0.0000		0.0000	-1.2698
		Min	0.0000		0.0000	-1.2698
	303		0.0000		0.0000	-2.5686
		Min	0.0000		0.0000	-2.5686
	304	Max	0.0000		0.0000	-1.6819
		Min	0.0000		0.0000	-4.2505
2	301	Max	0.5597		7.7340	-1.4498
	200	Min	0.5597		7.7340	-1.4498
	302	Max	0.4543		6.7377	-1.5048
	202	Min	0.4543		6.7377	-1.5048
	303	Max	0.8548		11.8119	-2.2143
	304	Min Max	0.8548 1.4145		11.8119	-2.2143 -1.4498
	304	Min	0.5597		7.7340	
- 3	301	Max	1.1197		13.7890	-3.6641 -1.2538
3	201	Min	1.1197		13.7890	-1.2538
	302	Max	0.9039		13.5113	-1.2503
	302	Min	0.9089		13.5113	-1.2503
	303	Max	1.7100		21.0595	-1.9148
	505	Min	1.7100		21.0595	-1.9148
	304	Max	2.8296		34.8485	-1.2538
		Min	1.1197		13.7890	-3.1686
4	301	Max	2.0335		19.9585	-1.1176
	7	Min	2.0335		19.9585	-1.1176
	302	Max	1.7958		19.7002	-1.3988
		Min	1.7958		19.7002	-1.3988
	303	Max	3.1057		30.4821	-1.7069
		Min	3.1057		30.4821	-1.7069
	304	Max	5.1392	15	50.4406	-1.1176
		Min	2.0335		19.9585	-2.8246
5	301	Max	2.9040		24.1634	-0.8306
	200	Min	2.9040		24.1634	-0.8306
	302	Max	2.6408		25.8827	-1.2879
	202	Min	2.6408		25.8827	-1.2879
	303	Max	4.4353		36.9041	-1.2685
	204	Min	4.4353		36.9041	-1.2685
	304	Max	7.3393		61.0674	-0.8306
-	201	Min	2.9040		24.1634	-2.1185
6	301	Max Min	3.7922		28.0225 28.0225	-0.6359 -0.6359
	302	Max	3.7922 3.6274		31.2171	-0.8359
	302	Min	3.6274		31.2171	-0.8099
	303	Max	5.7918		42.7980	-0.8099
	505	Min	5.7918		42.7980	-0.9711
	304	Max	9.5840		70.8205	-0.6359
	504	Min	3.7922		28.0225	-1.6070

A-1221 Wien

SEITE: C/S: BLATT: 22

POSITION: TRUSS1 - TRUSS1 ERGEBNISSE LFK

PROJEKT : TURKMEN - TURKMEN 1996.10.23 LF-UEBERLAGERUNG ------

MAX/MIN KNOTEN-VERFORMUNGEN

Knot		=====		====== iebungen		Verdreh	ungen (mr	
			u-X			Phi-X		
7	301	Max	4.6449		30.0850		-0.3723	
	-	Min	4.6449		30.0850		-0.3723	
	302	Max	4.5746		33.8027		-0.4935	
		Min	4.5746		33.8027		-0.4935	
	303	Max	7.0940		45.9480		-0.5686	
			. 7.0940		45.9480		-0.5686	
	304	Max	11.7390		76.0330		-0.3011	
		Min	4.6449		30.0850		-0.9409	
Я	301	Max	5.5261		31 4600		0.0000	
		Min	5.5261		31.4600		0.0000	
	302	Max	5.5827		35.7055		0.0000	
		Min	5.5827		35.7055		0.0000	
	303	Max	8.4399		48.0480		0.0000	
		Min	8.4399		48.0480		0.0000	
	304	Max	13.9661		79.5080		0.4629	
	F20 320 (0.1)	Min	5.5261		31.4600		0.0000	
9	301	Max	6.4074		30.0850		0.3723	
		Min	6.4074		30.0850		0.3723	
	302	Max	6.5908		33.8027		0.4935	
		Min	6.5908		33.8027		0.4935	
	303	Max	9.7858	9	45.9480		0.5586	
		Min	9.7858		45.9480		0.5686	
	304	Max	16.1932		76.0330		1.0120	
		Min	6.4074		30.0850		0.3723	
10	301	Max	7.2600		28.0225		0.6359	
		Min	7.2600		28.0225		0.6359	
	302	Max	7.5380		31.2171		0.8099	
		Min	7.5380		31.2171		0.8099	
	303	Max	11.0881		42.7980		0.9711	
		Min	11.0881		42.7980		0.9711	
	304	Max	18.3481		70.8205		1.6070	
		Min	7.2600		28.0225		0.6359	
11	301	Max	8.1482		24.1634		0.8306	
		Min	8.1482		24.1634		0.8306	
	302	Max	8.5246		25.8827		1.2879	
		Min	8.5246		25.8827		1.2879	
	303	Max	12.4446		36.9041		1.2685	
		Min	12.4446		36.9041		1.2685	
	304	Max	20.5928		61.0674		2.1185	
		Min	8.1482		24.1634		0.8306	
12	301	Max	9.0188		19.9585		1.1176	
		Min	9.0188		19.9585		1.1176	
	302	Max	9.3696		19.7002		1.3988	
		Min	9.3696		19.7002		1.3988	
	303	Max	13.7741		30.4821		1.7069	
	-	Min	13.7741		30.4821		1.7069	
	304	Max	22.7929		50.4406		2.8246	
		Min	9.0188		19.9585		1.1176	
13	301	Max	9.9326		13.7890		1.2538	

SEITE: 954 BLATT: 23

MAY/	MIN	KNOTEN-VERFORMUNGE	'N

۱r.	LFK		u-X u	pungen (mm) u-Y u-Z	Verdrehungen (mrad) Phi-X Phi-Y Phi-Z
		Min	9.9326	13.7890	1.2538
	302	Max	10.2565	13.5113	1.2503
		Min	10.2565	13.5113	1.2503
	303	Max	15.1699	21.0595	1.9148
		Min	15.1699	21.0595	1.9148
	304		25.1025	34.8485	3.1686
			9.9326	13.7890	1.2538
14	301	Max	10.4926	7.7340	1.4498
	302	Min	10.4926	7.7340	1.4498
	302	Max	10.7111	6.7377 6.7377	1.5048 1.5048
	303	Min Max	16.0250	11.8119	2.2143
	303	Min	16.0250	11.8119	2.2143
	304	Max	26.5176	19.5458	3.6641
	304	Min	10.4926	7.7340	1.4498
15	301	Max	11.0523	0.0000	1.6819
		Min	11.0523	0.0000	1.6819
	302	Max	11.1654	0.0000	1.2698
	Name of the last	Min	11.1654	0.0000	1.2698
	303	Max	16.8799	0.0000	2.5686
		Min	16.8799	0.0000	2.5686
	304	Max	27.9322	0.0000	4.2505
		Min	11.0523	0.0000	1.6819
16	301	Max	8.7496	7.0544	-1.2677
	200	Min	8.7496	7.0544	-1.2677
	302	Max	8.6824	6.7320 6.7320	-1.3324 -1.3324
	303	Min	8.6824 13.3630	10.7740	-1.3324
	303	Min	13.3630	10.7740	-1.9361
	304	Max	22.1125	17.8283	-1.2677
	304		8.7496	7.0544	-3.2038
17	301	Max	8.5351	13.7006	-1.3316
		Min		13.7006	-1.3316
	302	Max	8.5679	13.4456	-1.3685
	7	Min	8.5679	13.4456	-1.3685
	303	Max	13.0354	20.9246	-2.0337
		Min	13.0354	20.9246	-2.0337
	304	Max	21.5705	34.6252	-1.3316
		Min	8.5351	13.7006	-3.3653
18	301	Max	8.2273	19.2747	-1.0490
		Min	8.2273	19.2747	-1.0490
	302	Max	8.4043	19.6018	-1.2712
	200	Min	8.4043	19.6018	-1.2712
	303	Max	12.5653	29.4377	-1.6021
	204	Min	12.5653	29.4377	-1.6021
	304	Max	20.7925	48.7123	-1.0490
		M	0 7777	70 3747	
10	301	Min Max	8.2273 7.7981	19.2747 24.0451	-2.6511 -0.8326

SEITE: C/SS BLATT: 24

POSITION: TRUSS1 - TRUSS1

PROJEKT: TURKMEN - TURKMEN 1996.10.23 LF-UEBERLAGERUNG

ERGEBNISSE LFK

MAX/MIN KNOTEN-VERFORMUNGEN

not-	LFK		Verschie u-X			Verdrehungen (mrad) Phi-X Phi-Y Phi-Z
	LFK.		u-x	u-x (1-Z	Pni-X Pni-Y Pni-Z
	302	Max	8.0433	25.	7127	-1.1050
	ORIO PLINES.	Min	8.0433		7127	-1.1050
	303	Max	11.9098		7235	-1.2716
		Min	11.9098	36.	7235	-1.2716
	304	Max	19.7079	60.	7686	-0.8326
			7.7981	24.	0451	-2.1042
20	301	Max	7.2368		.2908	-0.6129
		Min	7.2368		. 2908	-0.6129
	305	Max	7 5277		.0390	-0.8183
		Min	7.5277		.0390	-0.8183
	303	Max	11.0525		.6804	-0.9360
		Min	11.0525		. 6804	-0.9360
	304	Max	18.2893		.9712	-0.6129
21	201	Min	7.2368		. 2908	-1.5489
21	301	Max	6.3815		.9750	-0.3935
	302	Min	6.3815		9750	-0.3935
	302	Max	6.5553		6349	-0.5227
	303	Min Max	6.5553 9.7463		.7800	-0.5227 -0.6011
	303	Min	9.7463		.7800	-0.6011
	304	Max	16.1278		.7550	-0.3541
	304	Min	6.3815		.9750	-0.3541
22	301	Max	5.5261		.7725	0.0000
22	301	Min	5.5261		.7725	0.0000
	302	Max	5.5827		.6588	0.0000
	502	Min	5.5827		.6588	0.0000
	303	Max	8.4399		.9980	0.0000
		Min	8.4399		.9980	0.0000
	304	Max	13.9661		.7705	0.2953
	00 00 0	Min	5.5261		.7725	0.0000
23	301	Max	4.6708		.9750	0.3935
		Min	4.6708	29	.9750	0.3935
	302	Max	4.6102		.6349	0.5227
		Min	4.6102		.6349	0.5227
	303	Max	7.1336		.7800	0.6011
		Min	7.1336		.7800	0.6011
	304	Max	11.8044		.7550	1.0341
		Min	4.6708		.9750	0.3935
24	301	Max	3.8155		.2908	0.6129
		Min	3.8155		. 2908	0.6129
	302	Max	3.6377		.0390	0.8183
		Min	3.6377		.0390	0.8183
	303	Max	5.8273		.6804	0.9360
	201	Min	5.8273		.6804	0.9360
	304	Max	9.6429		.9712	1.5489
2.5	201	Min	3.8155		. 2908	0.6129
25	301	Max	3.2542		.0451	0.8326
	200	Min	3.2542		.0451	0.8326
	302	Max	3.1221	25	.7127	1.1050

A-1221 Wien

SEITE: 056 BLATT: 25

POSITION: TRUSS1 - TRUSS1

PROJEKT : TURKMEN - TURKMEN

ERGEBNISSE LFK 1996.10.23 LF-UEBERLAGERUNG

MAX/MIN KNOTEN-VERFORMUNGEN

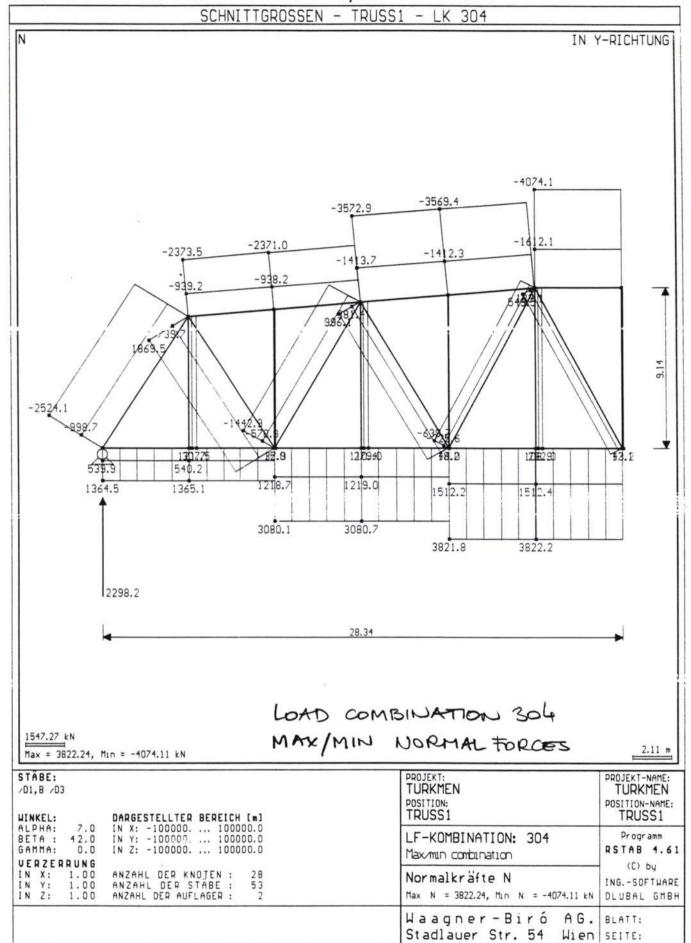
	5		Verschi	ebungen	(mm)	Verdreh	ungen (mr	ad)
Nr.	LFK		u-X	u-Y	u-Z	Phi-X	Phi-Y	Phi-Z
		Min	3.1221		25.7127		1.1050	
	303	Max	4.9700		36.7235		1.2716	
			4.9700		36.7235		1.2716	
	304	Max	8.2242		60.7686		2.1042	
		Min	3.2542		24.0451		0.8326	
26	301	Max .	2.8250		19.2747		1.0490	
		Min	2.8250		19.2747		1.0490	
	302	Max	2.7612		19.6018		1.2712	
		Min	2.7612		19.6018		1.2712	
	303	Max	4.3146		29.4377		1.6021	
		Min	4.3146		29.4377		1.6021	
	304	Max	7.1396		48.7123		2.6511	
		Min	2.8250		19.2747		1.0490	
27	301	Max	2.5172		13.7006		1.3316	
		Min	2.5172		13.7006		1.3316	
	302	Max	2.5976		13.4456		1.3685	
	-	Min	2.5976		13.4456		1.3685	
	303	Max	3.8444		20.9246		2.0337	
	000000	Min	3.8444		20.9246		2.0337	
	304	Max	6.3616		34.6252		3.0553	
		Min	2.5172		13.7006		1.3316	
28	301	Max	2.3027		7.0544		1.2677	
		Min	2.3027		7.0544		1.2677	
	302	Max	2.4830		6.7320		1.3324	
		Min	2.4830		6.7320		1.3324	
	303	Max	3.5169		10.7740		1.9361	
		Min	3.5169		10.7740		1.9361	
	304	Max	5.8196		17.8283		3.2038	
		Min	2.3027		7.0544		1.2677	
	301	MAX	11.0523		31.4600		1.6819	
		MIN	0.0000		0.0000		-1.6819	
	302	MAX	11.1654		35.7055		1.5048	
		MIN	0.0000		0.0000		-1.5048	
	303	MAX	16.8799		48.0480		2.5686	
			0.0000		0.0000		-2.5686	
	304	MAX	27.9322		79.5080		4.2505	

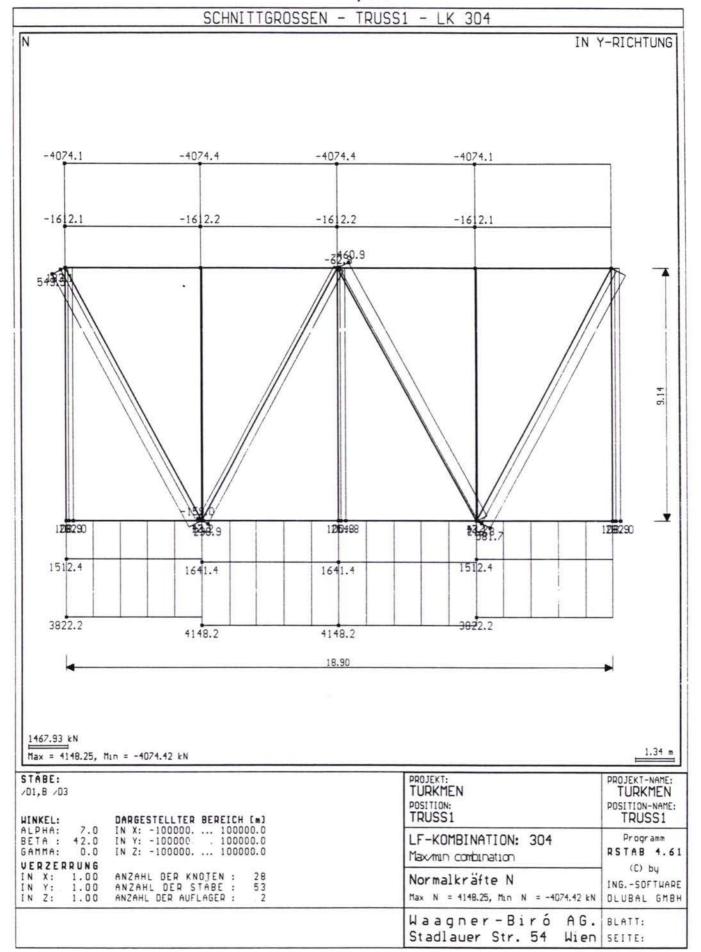
C/57

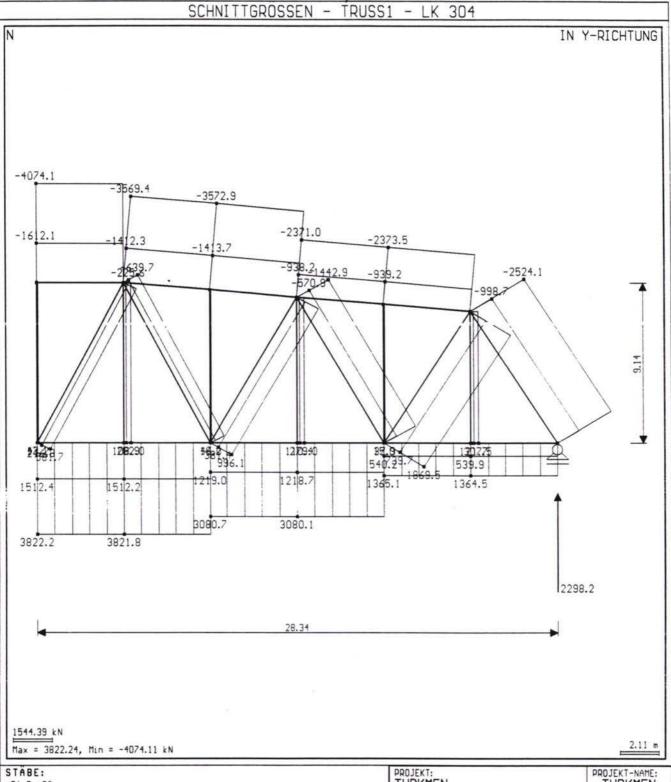
STRUKTUR - TRUSS1 IN Y-RICHTUNG 9.14 ¥ 66.14 4.34 m STÄBE: PROJEKT: TURKMEN PROJEKT-NAME: TURKMEN /D1,8 /D3 POSITION: TRUSS 1 POSITION-NAME: TRUSS1 DARGESTELLTER BEREICH [m]
IN X: -100000. ... 100000.0
IN Y: -100000. ... 100000.0
IN Z: -100000. ... 100000.0 K N O T E N N U M E R I E R U N G S T A B N U M E R I E R U N G WINKEL: ALPHA: BETA: 7.0 42.0 0.0 Programm GAMMA: RSTAB 4.61 VERZERRUNG (C) by IN X: IN Y: IN Z: 1.00 ANZAHL DER KNOTEN : ANZAHL DER STÄBE : ANZAHL DER AUFLAGER : ING.-SOFTHARE SYSTEM 53 DLUBAL GMBH 1.00 Waagner-Biró AG. BLATT: Stadlauer Str. 54 Wien SEITE:

C/28

VERFORMUNGEN TRUSS1 - LF IN Y-RICHTUNG DEPLECTION TOTAL UNIT LOAD 100 len/w 5.07 m Max = 116.152 mmPROJEKT: STABE: /D1,8 /D3 PROJEKT-NAME: TURKMEN TURKMEN LF/LG/LK 200×1 /F15 /T1 /D1 POSITION: TRUSS 1 POSITION-NAME: TRUSS1 WINKEL: DARGESTELLTER BEREICH [m] 1: ----ALPHA: BETA: 7.0 IN X: -100000. ... 100000.0 IN Y: -100000. ... 100000.0 IN Z: -100000. ... 100000.0 Lastfall: 1 Programm 200-fach RSTAB 4.61 0.0 GAMMA: Total loaded UERZERRUNG IN X: 1.00 IN Y: 1.00 IN Z: 1.00 ANZAHL DER KNOJEN : ANZAHL DER STÄBE : ANZAHL DER AUFLAGER : ING. - SOFTWARE 53 DLUBAL GMBH Waagner-Biró AG. BLATT: Stadlauer Str. 54 Wien SEITE:


VERFORMUNGEN - TRUSS1 - LF 2 IN Y-RICHTUNG CENTRIC UNIT LOAD 100 W/w 1.89 m DEFLECTION Max = 86.046 mmPROJEKT-NAME: STABE: /01,8 /03 PROJEKT: TURKMEN TURKMEN LF/LG/LK 200*2 /F15 /T1 /D1 POSITION: POSITION-NAME: TRUSS1 TRUSS1 WINKEL: DARGESTELLTER BEREICH [m] ALPHA: 7.0 BETA: 42.0 7.0 IN X: -100000. ... 100000.0 IN Y: -100000. ... 100000.0 IN Z: -100000. ... 100000.0 Programm Lastfall: 2 200-fach RSTAB 4.61 GAMMA: 0.0 Centric loaded UERZERRUNG (C) by 1.00 ANZAHL DER KNOJEN : ANZAHL DER STABE : ANZAHL DER AUFLAGER : IN X: IN Y: 28 ING. - SOFTWARE DLUBAL GMBH 1.00


Waagner-Biró


Stadlauer Str. 54

AG.

BLATT: Wien SEITE:

STABE: /01,8 /03 HINKEL: DARGESTELLTER BEREI		PROJEKT: TURKMEN POSITION: TRUSS1	PROJEKT-NAME: TURKMEN POSITION-NAME: TRUSS1
BETA: 42.0 IN Y: -100000 10	IN X: -100000 100000.0 IN Y: -100000 100000.0 IN Z: -100000 100000.0	LF-KOMBINATION: 304 Maxmun combination	Programm RSTAB 4.61
IN X: 1.00 ANZAHL DER KNOJEN IN Y: 1.00 ANZAHL DER STABE IN Z: 1.00 ANZAHL DER AUFLAGER	: 53	Normalkräfte N Max N = 3822.24, Min N = -4074.11 kN	(C) by INGSOFTHARE Dlubal GMBH
		Waagner-Biró AG. Stadlauer Str. 54 Wien	

Autor/Author Datum/Date Seite/Page No. 63 Änderung/Revis. Auftrag/Order No. 20-007

6. CHECK RESULT

G.1 DEFLECTION

As documented in the inspection report paragr. 3.3 "Proof load Measurement"
The deflections of the real structure are:

deflection	mm_	calcu.	mea- Sured	%
Centric load (2 locomotives)	<u>мпт</u> 2	36	28	78%
total load (4 locomotives)		48	38	79%

It is normal that measured deflection are less than colculated due to extra stiffness (gusset plates, bracings, action of cross + loupi-tudiual pinders acting with main pinders).

In the reverse case this would be an abarming sign.

Autor/Author Datum/Date Seite/Page No. 64 Anderung/Revis. Auftrag/Order No. 20 -007

6.2 FATIGUE CHECK

It is assumed that the load applied (2 and 4 locomotives) is a characteristic load for fotigue check.

Due to vett and track discontinuities an impact factor of $\psi = 1.40$ is applied which is very un favourable and therefor is on the safe side.

Under these assumptions the fatigue check results as follows.

lower chard # 6-7-8 t= 419 cm² (page C/9)
Nage C/35 Stab Nr. 7:

 $F_{uin} = 4148, 25, 1,40 = 5808 \text{ LW} = 6 = 139 \text{ N/um}^2$ $F_{uin} = 1641,39, 1,40 = 2298 \qquad 6 = 55$ $\Delta G = 84 \text{ N/um}^2$

due to tention: hole deduction estimated 20% Donet = 84 = 105 N/mm²

Eurocode 31 riveded structure eventually with fish plates > det. categ:: 112 > 105

correctly executed, with smooth

Autor/Author Datum/Date Seite/Page No. 66 Änderung/Revis. Auftrag/Order No.

transitions, no start-stop-positions, correctly tested:

detail category can go down to

det.cot. = 100 for force-parallel throat welds

olet.cot. = 80 for force-perpendic. throat welds

det.cot. = 50 for short welds,

assumed that the material is qualified for welding.

Danger of crades exists if welding is executed

TRACECA - MODULE C - WS 3200

CHARDZHEV BRIDGE

APPENDIX D SUMMARY OF FORMER INSPECTIONS BY THE LOCAL EXPERTS

SUMMARY OF STEEL QUALITY ASSESSMENT of bridge elements (as described in PART D-2 following):

Chemical analysis of the metal samples as described in chapter 2.6.1 (Most 51):

Carbon	Manganese	Silicon	Phosphorus	Sulphur	
С	Mn	Si	Р	S	
0,051 - 0,13 %	0,33 - 0,54 %	0,0 - 0,05 %	0,058 - 0,12 %	0,051 -0,062 %	

Comparison with steel quality Fe 360 = S235JO as defined in European Standard EN 10025 and EN 10027:

Carbon	Manganese	Silicon	Phosphorus	Sulphur	Nitrogene
С	Mn	Si	P	S	N
≤ 0,170	≤ 1,400		≤ 0,040	≤ 0,040	< 0,009

As there are no more elements checked a simplified Carbon-Equivalent (CEQ) is calculated:

 $CEQ = C + Mn/6 = (0,051 \dots 0,13) + (0,33 \dots 0,54)/6 = 0,106 \dots 0,220$

which were sufficient low values but the contents of Phosphorus and Sulphur are crucial as they indicate that the material is difficult to weld (less toughness, tendency of segregation, embrittlement). Contents of P and S should not be more than 0,045 % respective.

Mechanical characteristics of the samples (see table Most 119 on following page):

Values of yield stress, ultimate stress and strain show that the material are similar to steel quality Fe 360 = S235JO as defined in European Standard EN 10025 and EN 10027.

Only few values are below that standard:

sample 7.1 yield stress = 213,9 N/mm²,

which is below 225 N/mm²

sample 8.2 yield stress = 222,8 N/mm²,

which is below 225 N/mm²

sample 3.1 strain = 14,3 %,

which is below 25%.

In Most58 (see page 11 in D-2) an allowable stress is calculated assuming normal distribution:

 $R' = m\sigma_t - 3.\sigma_s = 271,5 - 3.32,47 = 174 \text{ N/mm}^2$ (based on 0,14 % fractile).

Calculating according to DIN or similar standards a characteristic value of $R_k = m\sigma_t - 1,645.\sigma_s$ is assumed (which is equivalent to 5 % fractile).

Therefor $R_k = 271,5 - 1,645.32,47 = 218,1 \text{ N/mm}^2$.

The allowable stress is then derived to be R_k /safety factor = 218,1 / 1,4 = 156 N/mm². This value is less than the above calculated to 174 N/mm². That fact indicates that the standard deviation of the material characteristics is higher than for normal steel according to DIN or European standards. Some caution is also based on this fact.

The following summary gives an overview which defects are detected in various spans if described in the inspection report.

MAIN GIRDER AND BRACING

from tables 2.1, 2.2, 2.3

Γ	TYPE OF DEFECT									
	RIVET CRACK DE						DEFORMATION			
SPAN No.	loose	deformed	missing	replaced by bolt		main element	bracing element			
1	2	1		12						
2	1			13			1			
3	2			10		1				
4	2			14						
5	1			15						
6	4			17			1			
7	1			22		2	4			
8	3			11						
9	2			13						
10	5	7		12						
11	3	2		13						
12	2	4	1	18						
13	3	2		20						
14	4	2 3		15						
15	2	3		11						
16	5		1	8						
17	3		1	10						
18	4	2		20						
19	2		1	19						
20	4	11		22			1			
21	8			22						
22	3	1		26						
23	19			25						
24	1	1		20						
25	9	2		15						

CROSS BEAMS AND LONGITUDINAL BEAMS, FISHPLATES AND

GUSSET PLATES "B" TO "P" from tables 2.4, 2.5, 2.6, 2.7, 2.8

	TYPE OF DEFECT								
		RIV	ET	CRACK		STRENGT			
SPAN No.	loose	deformed	missing	replaced by bolt	number	length mm	(ST) and No		
1		1		56	2	30	ST, 11		
2				38					
3				8			ST, 9		
4				115			ST, 5		
5				34					
6				34					
7		1		34					
8				19	1	NV	ST, 5		
9	1			56	2	NV	ST, 20		
10				37					
11	3			38	1	NV			
12		1	1	60	1	NV	ST, 5		
13				39	1	70	ST, 5		
14				474	1	NV	1		
15				6					
16				15					
17	2			7	1	NV			
18				2	3	NV			
A1.0.25					5	20 to 60			
19	3			8					
20			1	6	1	NV			
21		1		31	2 1 FP 3	NV 20			
22	1			29	100				
23	6		3	46	FP 1				
24	1		3	51					
25	1	1	1	53	1 FP 1	NV			

NV ... not visible due to overlapping by angle iron or fishplate

FP ... cracks in fishplates

MOST119.PCX

ANNEX D

Таблица

ЖЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПРОБ ЖЕТАЛЛА

	A							
# nc	эле- жент	MECTO BEPESKU	## O5PA3-	F TER.	G BP.	dz	ж. 0 6 тек СКО 6 тек	ж. о 6 вг ско 6 вг
1	2	3	4	. 5	6	7	8	9
2	0-1	ВЕРХНИЙ УПОЛОК ИЗНЕНЕЙ ИЗТЭВ ИЖИН У	1.1 1.2 1.3 1.4 1.5	2603 2546 2490 2370 2688 2546	4188 4131 4131 3890 4138 4067	33.3	254.05	409.08
2	1-2	ЛИСТ Диа∳- Рагмы	2·1 2·2 2·3 2·4 2·5 2·6 2·7	2989 3059 3183 3006 3077 3042 ****	4131 4067 4279 4191 4155 4050 4208	30.3 32.0 30.3 30.7 35.0	305.93 6.884	415.83
2	1`-2	уголок — —	3.1 3.2	**** 2882	3997 4244	14.3 31.3	288.20	412.05 17.465
2	2-3`	жолок — —	4·1 4·2	****	3784 3890	31.0 28.3	*****	383.7 7.495
2	3`-4.	уголок — —	5.1 5.2 5.3	**** ****	3537 3890 3431	35.0 40.0 40.0	*****	361.93
2	4-5`	УГОЛОК ВНУТР• ВЕТВИ	6.1 6.2 6.3 6.4	2971 2988 2794 2829	4545 4686 4421 4562	33.0 31.0 32.0 26.0	289·55 9·830	455-35 10-841
2	5`-6	УГОЛКИ 2 пробы	7·1 7·2 7·3 7·4 7·5 7·6	2139 2476 2653 2440 2370 2405	3678 3855 4173 4138 3802 3855	39.3 34.3 31.7 35.0 40.3 34.3	242.28 14.970	391.68
2	6-7	уголок — —	8·1 8·2	2370 2228	3926 3608	32.0 32.0	229.90 10.040	376.70 22.486
2	1-1	уголок — —	9.1 9.2	2653 3006	3890 4368	36.7 30.0	282.95 24.961	412.90 33.800

PART D-1

REPORT OF LOCAL EXPERTS (FIRST PART)

containing pages 1 to 45 (including tables)

1. GENERAL DATA

1.1.TECHNICAL CHARACTERISTIC OF THE BRIDGE

The bridge is located on direct one-track horizontal section of the railway. The bridge openning is blocked by 27 span structures under chain 11,58 + 25x66, 14 + 11,58. The bridge was constructed in period from 1898 on 1901 Designing of the bridge was conducted since March 1895 according to norms of 1896. The engineer of ways of communication Ol'shevsky S.I controlled the construction. Span structures had been made on Bryansk factories. The current of the river in place of bridge of crossing from the right to the left if to look on course of the account of span structures. Supports, span structures and their elements are numbered against course of the account of kilometers, that is from the side of Chardzhou.

1.1.1. DESIGN OF SPAN STRUCTURES.

Span structures № 0 and № 26.

Coastal span structures of a beam type, with two continuous beams with top driving (BHc.1.1; 1.2) are designed according to the norms of 1896 Calculated length 1-1,582 m.. (36 ft). Complete length 11,89 m.. Distance between axes of beams 11,828 m. (6 ft). Height of a wall of a beam 1,52 m.. The wall along the length of a span is made of six sheets, connected by fishplates. Thickness of a wall -9,5 mm. In near-support sections the top and bottoms chords of beams consist of angle irons 4 " x 4 " x 7/16 " (102x102x11.) and sheet 102x11. In sections located closer to middle of a span, from above and is from below added on one additional horizontal sheet 102x11. Vertical angle irons are the edges of rigidity, divide a beam on 15 sections. The beams in level of chords are connected by ties from angle irons, forming in the plan cross-shaped cross ties. There are also available cross-shaped cross ties. A material of span structures is metal (iron). A diameter of rivets - 22 mm.

Basic parts are flat, each consisting of two plates: top and bottom. The bottom plate from above has a deepening - a bed, which does not permit the top plate to be moved in cross direction. In its turn a bed of the top plate covers a chord of a main beam span structures.

Span structures Nr. 1 - № 25.

Channel span structures with bottom driving, with through trusses by effective span of 66,142 m. (217 ft), are designed according to the norms of 1896 of an Outline of the top chords of trusses is broken with effective heights of 7,874 m. - in section of

first unit and 9,398 m. in sections at middle units. A lattice ie triangular with racks and hangers. Quantity of panels - 14 on 4,724 m. each. A material of span structures is metal (iron). All elements of span structures are riveted of rolling grade of metal. Tere are used both equal-side angle irons (3 " x 3 " x 3 " /8; 3"1/2 x 3 " 1/2 x 3 " /8; 4 " x 4 " x 7 " /16), and different side angle irons 5 " x 3 " 1/2 x 1 " /2; 6" X 4 " * x 1H/2; 6" x 4 " x 7 /16). Section of elements are enclosed. In attachments of angle braces B1 - 2, B2 - 3 "; B3'- 4 and B5 " - 6 to chords rivets the diameter of 23,8 mm are delivered. (15 " /16). Rivets by a diameter of 22,2 mm. (7 " /8) are applied in all main partsB4 - 5 " and B6 7 ", in separate parts of angle braces and in attachment to chords of racks and supports. Rivets by a diameter 19,0 mm. (3 " /4) are used in attachments of elements of a connecting lattice.

Distance between axes of trusses of 5,537 m. (18 ft of 2 inches). The trusses are connected between themselves by longitudinal top and bottom ties, and as by cross ties, located in planes of racks and supports. Section of longitudinal ties in comparison with initial are changed during repair jobs and strengthening in 1955-58 In their structure is entered on one additional angle iron 100 x 75 x 8. In 1980 at average cross beams there were arranged brakes ties (fig.1.5) Thus longitudinal ties joined longitudinal beams through vertical sheet and between themselves they were joined with spacer.

Longitudinal and cross beams are continuous with arrangement of the top chords in one level. Distance between longitudinal beams 1,829 m. (6 of ft). Originally the joint of longitudinal beams had not the bottom fishes. Now, after strengthening, on all span structures (except span structures24 " " 25) there are installed the bottom fishes with tables. On span structure № 25 connections of longitudinal beams have other design. To bottom chords of longitudinal beams on sites of their joint to cross horizontal fishplates on high-strength bolts as with one, and on the other hand are attached. On horizontal fishplates steels cores of round section, missed through an openning in a wall of a cross beam are welded. The longitudinal beams are connected by cross ties - in middle of the panel and longitudinal ties - in level of the top chord. The cross beams are attached to units of main trusses with help of axes. Section of beams of the bridge road are shown on fig. 1.4.The top horizontal sheet at longitudinal beams are installed for strengthening in 1980. The horizontal sheets (two from above and two from below) on cross beams were delivered in 1937 - 1942.

On the half of span structures in 1965 support of a line of power transmission were installed. The support have a design in kind of console trusses with triangular lattice from angle irons with bolt connections. The supports are located on panels 13 14 (1 - 2) on top chords of main trusses.

Basic parts are hinged-balanced. The mobile basic parts are rolling and located from the side of Farab and have six rolls each with a diameter of 114 mm and length of 775 mm.

Bridge floor laid on wooden crosspieces. Rails R50. The levelling devices are not present. Bridge the bars by section 240 x 200 are attached to top chords of main and longitudinal beams with help лапчатых of bolts. КонтВуголки by section 160 x 160 x 20, security angle irons 160 x 100 x 16. Over cross beams there are installed transitive tables.

Main footwalk pass along the bridge is arranged on consoles at the upper (right) side of the bridge outside of span structures. A flooring of the pass is wooden. Along the whole length of the bridge on flooring there are stacked rails of a narrow track for moving of the technological carriage. Within the limits of coastal spans the footwalk the span is passed along span structures, each consisting of two continuous beams with broken outline of the bottom chord. Span structure of sidewalk leans on console, one of which is fixed on abutments, other on basic unit Вуслового span to structures m » 1 or T *? 25). The fastening fotwalk of pass to Вусловым span to structures is made in units of main trusses.

On whole length of the bridge there is the pass inside of span structures. This fotwalk pass is located from the low side from rail track (at the left). Plates of reinforced concrete of a pass are stacked on consoles, attached to vertical edges of rigidity of longitudinal beams. There are the refuges. From the right from rail track the space between bridge floor and main trusses is closed by corrugated steel sheets.

Over main fotwalk pass to elements of main trusses on consoles the power cables are attached.

1.1.2. DESIGN OF SUPPORTS OF THE BRIDGE AND INFORMATION ABOUT THEIR STRUCTURE

During designing of the bridge across Amu-Daria extensive prospecting work, reflected in an Album of the excutive drawings [8) were carried out. In this

document the historical and geographical information on river to Amudarya in the region of Chardzhou oasis are shown. There are marked fast current of the river, its extremly turbid water. As in Chardzhou region both coasts are low-lying, and valley of the river consists from weak alluvial soils, the outline of coast has strongly changed, and their destruction occured very quickly. Width of the river during researches and construction on the average made 2 - 3 kms., along the channel there are a lot of sand-banks and islands.

In the [8] there are given maps of the river in region of the bridge crossing at horizon of low water for period of 1888 on 1899 inclusive. Here there are clearly seen formation and erosion of islands and annual changes of channel.

Flood on Amu-Daria during researches and construction occured in June and July, that is connected with melting of glaciers in sources of the river. There was marked also spring flood in April, connected with melting of snow in prehills and долинах. In [8] the diagrams of horizons of water in Amu-Daria with 1886 on 1901 inclusive are shown. The lowest horizons of water were observed from November to April.

In 1887 higher along current from axis of the future bridge the temporary wooden bridge was constructed. Starting with 1888 there began erosion of support of this bridge. For struggle with erosion the bottom of the river was strengthened with stones. Then a work for strengthening of coast in place bridge of crossing have begun.

During surveys investigation for determination of speeds of current of the river, areas of live section, heaviest charge of water, inclination of the river were lead. The openning of the bridge was nominated equal 11 x 1600 m.. It corresponded to effective average speed of water 2,75 m/sec,, at average depth of water under bridge of 4,0 m..

In design materials data on geological structure of soils in place of the bridge crossing are shown. The bottom of the river was composed by powerful layers running ground and black sand, lower there are layers of clays, clays with sand, yellow sand, cemented grey.

All 24 intermediate support of the bridge have practically identical design. The support consists of two columns variable on height of a diameter. Each column is covered with riveted steel plating. The diameter of the bottom part of columns was

chosen from condition of effective dipping of columns, at pressure on ground about 0,62 mPa of 2.5 poods per sq. inch). The bottoms parts of columns are supplied knife by a part with round openning by a diameter 1,58 m. For passing of a grab, having a diameter about 1200 mm.

On top part of knife section in accordance with dipping of columns a rubble masonry was erected, and for protection of fresh solution from erosion during the work of a grab, the masonry was protected inside a well by metal sheets by thickness 1,2 mm. For reduction of friction of the plating about ground of the outside there were done hidden head of rivets of knife section. Above section the plating of columns has yet five sections of the same diameter with thickness of sheets of 6,3 mm. (1/4 inch). The following three sections of columns have a smaller diameter, that was done for reduction of friction at dipping of columns. Appropriate ring-shaped step 152 mm in width was formed by angle irons 152 x 102 x 13 and 76 x 76 x 10. Above specified three rows there was arranged one more step of angle irons of the same size. In this part of a column from 6 up to 7 sections depending on depth of dipping. The whole section of a underwater part of columns, except knife one have thickness of sheets of 6,3 mm.

Inside both steps of a underwater part of columns are srtrengthened by six arms of curved angle irons.

The top edge of underwater part of columns after dipping exceeded on 0,25 m. horizon of the lowest waters. This part of a column is finished with ring-shaped platform 483 mm of width. And top head of rivets were here arranged as secret. Ring-shapedыe of a platform, surrounded from within by curved angle iron 76 x 76 x 10 are strengthened by six arms from angle irons 51 x 76 x 10. The top part of angle irons of arms is continued up to horizon of the highest waters (up to 1/3 height of the second section of a surface part of a support) and is seized on height by two ring-shaped angle irons 51 x 76 x 10.

On underwater part of each column after its dipping, there were freely installed steel riveted section of the plating of a surface part, than before concreting these parts of columns had not been tied to something. It was done for in case of errors at dipping of columns, their surface parts could be installed in exact design position as lengthways, and across axis of the bridge. At erection of a masonry inside plating angle arms were immersed in concrete massif and rubble masonry and provided additional connection between underwater and surface part of a column.

The surface part of each column of intermediate support has a diameter of 2641 mm and consists of four stages with height of 1829 mm each.

For maintenance of necessary rigidity and stability of support, two of the bottom stages of a surface part have the additional plating by thickness 12 mm. Inside plating horizontal and vertical ties from angle irons were installed. Two top circles of columns, having thickness of sheets 8 mm., are also connected by horizontal, vertical and inclined ties. The horizontal and vertical joints of sheets of the plating of a surface part are blocked by outside fishplates of width 165 mm. All vertical seams of the plating place are tied.

On top parts of columns, is above angle irons surrounding top of columns, there were installed riveted metal headbands (cornices) from curved sheet and angle metal 6 mm. thick (fig. 1.17). The design of a cornice and its interface to column permitted to carry out certain adjustment of top of columns on height. The separate parts of a cornice, consisting of eight sections, incorporated to help of internal fishplates on rivets with outside secret головками. The internal part of cornices was filled by concrete. Complete height of a cornice is equal 1250 mm., height of the bottom part, interfacing a cornice to a column, makes 330 mm. An internal part of a cornice is strengthened by ties of six angle irons and curved anchoring strips.

The internal rubble masonry was erected ring-shaped only in underwater part of columns. After end of dipping of each column and installation of the bottom section of the plating of a surface part, concreting internal wells and surface part of a column up to level was carried out, on which there was the water in river in operating time. A continuous rubble masonry was further erected, which was finished by two spacer rows with thickness of 0,32 m. each. After stacking of spacer rows they installed cornices and filled by concrete the bottoms emptiness between cornices with spacer rows. On spacer rows (through sauce) there were installed granite support stones. Empty space between under-truss stone and top part of a cornice was filled by concrete up to level of a bottom of the top part of a cornice. On this concrete there were installed overflow stones, having inclination of the top sides across axis of the bridge. In plan under-truss stones have two rectilinear sides, parallel an axis of the bridge, and two sides, cut on arch of a circle and contiguous directly to top part of a metal cornice.

The thickness of a stone ring masonry of columns was chosen from condition of immersing of a column on given depth under action of own weight rubble masonries and metal plating.

After shown account in project a conclusion was made, that immersing of a column up to effective depth—cannot be provided only by scooping out—ground. For immersing of columns on last 4,25 m. it was necessary to resort to artificial downturn of horizon of water inside—well about on 5,3 m. with help—pumping by the centrifugal pump, to cause a movement of water along outside surface of a column and to reduce friction of the plating about ground.

In design materials there is also given the effective substantiation of depth of immersing of columns of intermediate support, proceeding from minimum possible erosion. The size (effective) of erosion was accepted basing on the results of observations of maximum erosion at one of columns of a pier Nr. 22, which had been noticed in June 10 1900.

For pier # 22 the following parameters were calculated:

Weight of a underwater masonry of a column is 2387,0 kN (14922 poods)

Weight of a surface masonry is 688,0 kN (4302 poods)

Weight of the metal plating - 285,0 kN (1782 pood)

Gross Weight of a column V = of 3361,0 kN (21006 poods).

During pass of the highest waters in 1901 the depth of the basis relatively the bottom was h_{I} = 5,33 m.. For this case in design materials there was determined factor equal to:

$$m_1 = h_1 / h_2 = 1,91$$

In design materials there is given rather detailed description of manufacture of work for construction of intermediate supports. Their dipping was made from wooden stagings, based on a double piling. The dipping of both columns of one pier was carried out alternately by one excavator. In the beginning of work the dipping of columns was carried out by the steam Kekerill crane. Further on it appeared more conveniently and more safely to work with steam crabs, placed outside of stagings on separate platforms.

For digging out ground when dipping columns there was applied an excavator (two-jaws grab) of the Bull' system manufactured in Pristman factory in England.

When conducting the work the elevating chanes of a grab were some times broken off, that slowed down a course of dipping.

Each column was suspended to stagings with the help of four or six special chains, the regulation of which was carried out by elevating screws. The chains consist of separate demountable parts, length of which was equal to length of the screw.

When dipping of a column they carefully monitored uniform tension of all the chains.

When immersing, columns an excavator made up to 400 rises per day and could return up to 39 m³ of rocks. The work by an excavator were conducted alternately on two columns. Under normal conditions in a day it was possible to lower both columns up to 1,6 m..

As a ground was excavated from column there was its dipping, and pendant chains stretched. With the help of an elevating screw column was lowered before easing of chains. After each dipping they determined position of a column in plan (with help four plumbs) and its deviation from vertical axis (with help of a level). For correction of columns when dipping they used stone counterbalances, jacks and spacers or regulation of a tension of pendant chains. After dipping of a column on 8 10 m. correction already was not required. The further dipping was carried out without pendant chains.

When the top of a ring masonry of a column reached on 0,4 m. horizon of water, further dipping of a column had been stopped, and excavator was moved for dipping of other column. On first column they put the following part of the steel plating and filled it by ring rubble masonry, which was conducted by 8 Italian masons. From internal side the masonry was limited by iron riveted former, the outside diameter of which was equal to a diameter of a column well. The former was suspended on drafts to runs of stagings at such height, that its bottom always was 1,0 m. below the surface of a ring masonry at the moment of escalating of a new link of the plating. Space from top of a former up to bottom of runs of stagings was covered by roofing iron, that served protection to masons at fulfilment of a ring masonry in operating time of an excavator.

At rise a grab shocked masonry and could destroy it. For protection of a masonry it was protected from within by the plating of sheet iron 1,2 mm thick. At the end of dipping of poles this plating was partially removed and rosen upwards, grasped

by excavator. Partially this plating was removed after filling of the well on half of the depth and downturn of water horizon in the well with the help of centrifugal pump. It was done for maintenance of strong tie of a masonry with concrete. At erection of a ring masonry before termination of dipping of columns they used cement solution with ratio of cement. and sand 1:3. In surface part for stone masonry applied a solution with ratio 1:4.

When passing a knife of columns through layers of clays the dipping was much slowed down. In this case they applied a grab with teeth; increased speed of dipping of a grab, previously loosened ground with bit.

At dipping of columns of support ## 13 and 19 when passing f layers of clay they have applied blasting ground with help powder cartridges. Similar work have been carried out at dipping of columns of supports ## 17, 22, 23, 24, with the help of pyroxyline.

In [8] there are given the diagrams of a course of work when dipping piers ## 2 and 20. The columns of a pier # 2 were lowered from November 11 to December 18 1899, column of a pier # 20 from the 6th to 24th of March 1900.

Simultaneously with dipping of columns separately they carried out assembly and riveting of two bottom parts of a surface part of a pier. After dipping of underwater parts up to necessary marks axial lines of a support were restored and careful measurement of distance up to next support (average effective temperature was accepted as 16 "C). The assembled parts of a surface part were installed on ring platforms of a surface part at first approximately, and then them levelled with help of metal wedges, laid under the bottom shels of the bottom angle irons of a surface part. After dipping of columns up to proper marks wells of columns were filled by concrete. The mix for concrete was prepared separately and in ready form moved to place of work. River grey sand from top part of layers of a ground, lifted by excavator at dipping of columns was used. The dry mix of cement, and sand relating 1: 4 was mixed with washed out crushed stone and further on moved in so-called concrete mixers, with help of which the concrete was dippen in a well. They applied two kinds of concrete mixers: wooden and rectangular having capacity of 0,3 m³ bottom, and metal overturning ones. The concrete mixers were with unlockable lowered in well with the help of manual or steam crabs. Unlocking of bottom or overturning of concrete mixers was carried out on given depth automatically with help of a cord. For complete filling of one well it was required 3 days of continuous work.

When constructing piers the following materials were applied. The steels parts of columns for twenty piers were delivered by Bryansk factories, for three piers by a Rudsky&C° factory in Warsaw and for one pier by a Nikopol'-Mariulol factory.

Rubble stone for masonry inside columns was extracted from quarry at Ziadin station in 230 kms. from Chardzhou (towards Samarkand). rock of stone is marble-like limestone. The extraction of stone was carried out by an explosive method. The stone passed test in Mechanical laboratory of Institute of the Engineers of Ways of Communication.

The piece stone for under-trusses and overflows was brought from vicinities of city of Samarkand. The rock of stone is similar to Serdobolsk granite, has large hardness and uniform structure.

The Portland-cement. for rubble and concrete masonry was delivered exclusively by factories of Society of Gluhoozersk factories in Вольске. All parties(sets) of cement. passed tests on rules of Ministry of Ways of the Communication.

The sand for rubble masonries was extracted when removing ground, at dipping of columns of supports.

The abutments of the bridge have a design of a separate type. The top part of abutments leans on common bases, carried out in a kind of so-called cards of caissons. The dipping of caissons of both abutments was carried out with help digging off ground by 8 excavators through eight rectangular well, taking place through ceiling of each caisson.

The internal space of caisson is divided on 8 well with the help of one longitudinal and three cross beams, located above the knife of a caisson on 97 cm. The metal plating of a caisson has thickness 3,2 mm (1/8 of inch) and is strengthened by fishplates.

For dipping of open caissons of the abutments special stagings, consisting of eight double wooden trusses were arranged. After assembly of a caisson it was suspended on 22 chains, attached to the top parts of cross beams and to angular arms of lateral walls. The dipping of a caisson was adjusted by the elevating screw.

Rubble masonry was carried out in space between wells and of them along perimeter of a caisson. They began masonry, when the bottoms edges of ceilings

between wells reached water. After certain deepening of caissons in ground further supporting of them on chains was not required, as the dipping proceeded without appreciable deviations from vertical.

In accordance with dipping of caissons, their metal parts were increased; a rubble masonry was erected. Composition of cement solution for masonry had ratio 1:3.

Concreting of wells of open caissons of the abutments was carried out according to the same technology, as for well of piers. The concreting was carried out similtaneously in four wells. Two pairs of extreme wells along axis of the bridge had been concreted up to top, as on them futher on there were erected surface parts of the abutments. Middle wells were filled partially by concrete and partially by sand.

The top part of the abutments consists of two parts: of a supporting wall and pier. Between them a longitudinal wall is arranged, which blocks water flow between pier of the abutments and cone of embankment.

The surface part of the abutments was erected from rubble stone using cement solution with ratio 1:4. From outside side rubble masonry was covered with cut grey granite stone. Seams were pointed with cement. with admixture of dutch soot. The general view of a pier is shown.

On fig. 1.21 the diagram of a structure of intermediate supports and abutments of the bridge across Amu-Daria is shown, where main phases of work are outlined. First columns of a support #9 were lowered, for that columns of support ## 10, 11, 13 were consistently lowered. Further many columns of support were lowered practically simultaneously the last were lowered in March 1900 - columns of support № № 20 - 24.

1.2. BRIEF INFORMATION ABOUT RESULTS OF PREVIOUS INSPECTIONS OF THE BRIDGE DURING ITS OPERATION

During the whole period of operation the bridge was repeatedly surveyed by various organizations. There are the information, that before Great Patriotic War the bridge was surveyed at least once - in 1928 by Saratov bridge-testing station. It was not possible to find the results of this work.

In post-war period the bridge was surveyed rather regularly. The first of such inspections was lead in 1947 bridge-testing station of Novosibirsk Institute of the Engineers of Railway Transport. The inspection was accompanied by detailed geophysical measurements. There was performed a binding head-bands and undertruss stones of all supports of the bridge in plan and in profile. In the report of NIERT of 1947 the following main damages of span structures and supports were marked:

- Extension of metal in riveted elements of through main trusses;
- Corrosion of elements of the brigge road;
- Curvature of elements of main trusses and connecting lattice;
- Weak top longitudinal ties between main trusses;
- Corrosion of ties between poles of supports in the level of change of horizon of water (reduction of thickness of shelves of separate angle irons of ties up to 60 %).

In 1951 Saratov bridge-testing station has noted the following damages:

- Corrosion of the plating of support: thickness of the plating is $\delta = 12.7$ mm. in some separate sites it has decreased as an average on 3 4 mm.;
- Rusting of metal in cracks between separate parts of sections of elements of main trusses in consequence of a large step between binding rivets, but also in attachments of connecting lattice;
- Failures in maintenance of bridge-floor ;
- Frustration of rivets in attachment of longitudinal beams to cross beams.

In 1952 Bridge-investigating Diving Station of the CP MPS has carried out inspection of underwater and surface parts of the bridge supports. In appropriate report it was marked, that the waterway of the river is not constant, in current 8 - 10 years it keeps moving from one coast to other. In 1937 the waterway was at right coast, in 1942 - 45 years - at left-hand. During inspection a waterway passed at the middle of the river.

During underwater inspection support № № 14, 15, 16, 17, 22, 23, 24 were examined. Were revealed leaky tighted rivets in joint fishplates of the plating. It was marked, that rusting of underwater part of support has a kind of sinders, separated by plates 3 4 mm thick. Oxidation occurs mainly in fodder part of columns, where there is the least speed of current of water.

Breaks bridge covers, but also weak rivets in underwater part of support is found out was not.

At inspection of a surface part of support there was carried out knocking covers with sledge hammer. Thus backlog of cover from masonry was found out in 253 places. Maximum backlog by the area of 6,5 mm are revealed on support #24. Was made 14 notches in covers of supports ## 9, and, 13, 16 and 23. The notches were done in all four stages of a surface part of columns in places of backlog of the cover from masonry, in places of occurrence rusty spots and through Opening of columns has shown, that in places leaky пВилегания the backlash reaches 5 mm. It was also revealed, that in first stage of an over-foundation part of masonry is not concrete, but rubble with cement a solution. * Rubble stone of the masonry is marble-like lime-stone of satisfactory durability. Cement was crumbling at average impact of a hammer. The masonry was in satisfactory condition, though there were the emptiness of volume up to 2000 cm³, and a diprod penetrated into emptiness on depth up to 43 cm.

In conclusion upon the results of inspection the Diving Station has given the following recommendations:

- To cut out the plating in zones of emptiness and to clean dust were available;
- To fill with plastic concrete emptiness in rubble masonry;
- To deliver on place of notches metal fishplates on welded seams;
- To paint a surface part of support not less often than once in five years;
- To monitor condition of under-truss platforms;
- To carry out injection of cement solution in emptiness of a masonry;
- To replace all rusty bottom ties between columns.

In 1952 under the orders of MPS there was lead inspection of hydro-geological conditions in place of the bridge crossing. In materials of inspection there is specified, that a zone of possible wandering of channel is about 3 times more than size of an openning of the bridge. Therefore the struggle against opportunity of bypass of the bridge by the river began at once after end of construction.

In materials under review the brief geological characteristic of the region of the crossing is given. Is specified, that долина of the river is formed by alluvial deposits, underlaid by hard tertiary rocks. The hard rocks are exposed on surface only on right side and they are almost not being erosed. On left-hand coast the exposure of hard rocks is is absent. The tertiary deposits are presented by dense sandy clays, and bycemented grey and yellow sands.

In data of 1952 on the regime of the river high rigidity of water in view of presence of sulfuric anhydride and sodium chlorine is marked. The charge of water in 1950 made 2225 5196 m³ /sec. The process of erosion is as an average compensated by silting of ground.

On same data, maximum erosion under bridge was observed in 1919 at support № 19. The whirlpool with a diameter about 200 m. with centre in support # 19 for one night erosed to depth of 22,4 m., thus only 0,76 m remained up to mark of a support bottom.. In result of erosion the upper column of support # 19 has given a setting of 53 mm and roll of 77 mm. On the under-toss platform the horizontal deviation reached 336 mm. The lower column has received the same roll, but there was not any setting. The movement of trains had been interrupted, the liquidation of erosion was conducted during three days by a continuous load of rubble stone in a volume of 1850 m ³.

The practice of water of struggle during first 50 years of operation has established a compulsory load at eroded supports, when their deepening in ground becomes less than 11,0 meters. The dipping of gabions will be carried out directly from the bridge, as a rule, up to level of lowest waters and is higher on. It was marked, that during 50 years there had been poured a huge amount of a stone, the large part of which is broaught away by flow and is not saved.

^{*} During construction the concreting of a underwater part of columns was carried out up to level, on which there was the water in river in operating time (see section 1.1 of the present report).

In conclusions on given materials there is specified, that the openning of the bridge does not work on 40 % and can be reduced, and influence of this reduction owes be appreciated experimentally. It is recommended to continue designing and construction of regulating structures and dams for protection of Chardzhou. There also was made as a conclusion that it would be expedient to construct the bridge of the second track at the top side from existing one.

In 1953 Transmostproekt has developed the detailed design for capital reconstruction of crossing bridge across Amu-Daria. In this connection they carried out at support # 11 and 19 drilling by means of a hand- power percussion-rotary complete set with purpose to reveal presence of a rock fill at support. All 12 bore holes (6 for each support) have shown presence of a stone at the depth of 10 meters from the edge of foundation parts of support, that has confirmed preservation rock fills.

In the same 1953 Bridge Design Bureau of CP MPS has developed the detailed design on repair and strengthening of the bridge across Amu-Daria. In appropriate materials there are the results of geodetic surveys of the span structure # 11, building rise at which was 50 mm. for right truss, and 63 mm for left-hand one.

In same design order of the Bridge Design Bureau the data on turning loads H and modes of operation of the bridge had shown, that starting with 1952 traffic along the bridge has sharply increased. In 1953 ther was introduced a load from 2 oil engin locomotives and cars and pressure intensity 7,2 tc/m. In that time there also circulated trains with steam locomotives of the CO serie.

In 1959 the bridge was surveyed by Moscow Bridge-Testing Station of CP MPS. In appropriate report there was indicated that up to the moment there had been conducted strengthening of spacers of a connecting lattice with the help of angle irons, strengthening of a connecting lattice of the top chords also with the help of angle irons, strengthening of the top longitudinal ties between trusses, reconstruction of portals. It was marked, that to the moment of inspection (1959) repair and painting of all the supports had been completed. The repair consisted of cementation of separate support, repair of cross ties of supports and installation inspection traps between separate poles of supports. In report the recommendation is given to remove rail levelling devices, installed at every other span.

In 1966 the LJBK of MIIT experts surveyed and partially tested span structure of the bridge. In data about history of the bridge (report of MIIT of 1966) there was specified, that to that time span structures had been stregthen 3 times. In 1937 -

1942 cross beams were strengthened by addition of two horizontal sheets, voterens were replaced for bridge bars. In 1955 - 58 a connecting lattice of the top chords and angle braces was strengthened, there was strengthened attachment of elements in 3'- 4' to units 3', connections between trusses were strengthened, there were performe a work for increase of a dimension under 2-C, plenty of weak rivets in attachments B and P were reriveted. In 1965 when installing consoles of a line of electrotransmission the top chords of main trusses in edge panels were strengthened by two horizontal sheets.

In the report there is marked, that in 1966 during a pass of the train an excavator cantilever had damaged "axes" in attachment of cross beams to units of main trusses.

In report of DZHEK MIIT there was marked, that main damage of main trusses of span structures to 1966 was beginning mass—frustration of rivets in attachments of angle braces B5' - 6' and B8' - 9' to top units. During inspection—there was found out 169 weak rivets in first—lines of attachments. There was marked a beginning of work of separate riveted joints—(rivets) in the III—stage—with substantial growth of factor of concentration of tension—at—rivet opennings. There were no cracks in these units—, but their occurrence was predicted in nearest (after 1966)—future. The endurance class of these angle braces was determined equal 4,66—with load class—4,70 (TEZ + 7,2—ts/m).

Main damage of the bridge road in that time was frustration of rivets in attachment of longitudinal beams to cross beams (in walls P), observed already for a long time. It was marked, that in 1955-57 many weak rivets and 155 high-strength bolts had been reriveted. Cracks in the horizontal shels of the top chord angle irons of longitudinal beams and were found out also in separate profiles of attachment of ties to these beams.

During the tests tensions in angle brace B8 - 9° of a right truss span structure No 1 were measured. At trains taking place they have not exceeded 610 kg/cm² from temporary load). According to the MIIT data dynamic factor for main trusses in case of oil engin locomotive traction has made $(1 + \mu) = 1,07$.

MIIT had also carried out test of unit of attachment of a longitudinal beam to a cross beam. Axial tensions (efforts) in assembly rivets and high-strength bolts were measured. There was made a conclusion, that mode of operations of bolts with axial tension 15,0 tn was better, than with tension 20,0 tn.. It was recommended in lines 1, 2, 6, 7 and 8 attachments of longitudinal beams to make tightening of bolts to

the effort of 15,0 tn , in other lines to 20,0 tn.. In result of work of MIIT in 1966 the conclusions were made that span structures provide the passing of all the loads (trains with oil engin locomotives TEZ, steam engin locomotives E and L), circulating along the bridge in that time, without restriction of speed. The danger of mass frustration of rivets in attachments of angle braces 5 " - 6 was also specified.

It was recommended in nearest years to carry out strengthening of attachments of longitudinal beams to cross beams with maintenance of transfer of bending moment through fishes and other constructive elements, to strengthen longitudinal beams by horizontal sheets, to carry out strengthening of angle braces B5'- 6 and B8- 9' on endurance and durability. As urgent measures it was recommended to replace weak rivets of first two rows of attachment of angle braces B5'- 6 and B8- 9' by high-strength bolts as in top and in bottom units, but also to replace weak rivets with high-strength bolts in attachment of longitudinal beams to cross beams (1, 2, 6, 7, 8 rows - with tension of 15,0 tn., other - of 20,0 tn.).

In 1980 Kiev Bridge Station of CP MPS had inspected the bridge. In appropriate report when describing of general data there is specified, that after washout in 1919 of support # 19, the basic parts were moved on the distance of displacement of a pier (33 cm) not only on this support but also on support # 18 on distance 11,5 cm.

During inspection of 1980 on the bridge strengthening of longitudinal beams of bridge road was finished. It was marked, that the work of strengthening of longitudinal beams had been performed with law quality, there is the plenty of (weak) rivets, on each span structure (from 30 up to 100 rivets).

In the results of inspection there were marked cracks in seams between stones of covering of the abutments and corrosion of the plating of piers in level of variable horizon of water.

During 1984 the bridge was jointly inspected by Tashkent Bridge Station and Repair - Investigation Diving Station of CP MPS.

In the conclusion of Tashkent Bridge-Testing Station there is shown the presence of "blind" joints in right rail string at 1=0°C, loosing of leaning of rails on rail chair and pollution of ballast on approaches.

They has marked in supports of the bridge, in joints between columns and foundation the part formation of a niche, with depth up to 70 cm (on support No

23). During inspection of the bridge in 1984 works on repair of support under project of Giprotransput » were carried out. At the top side of supports # # 18 - 24 under this project there were arranged the chords of reinforced concrete.

At level of variable horizon of water strong corrosion of the plating and angle irons of tie between columns of support was marked.

In span structures Tashkent Bridge Station has revealed the following damages:

- Holes and cracks in top chord angle irons of longitudinal beams (all cracks are blocked by angle fishplates *;
- Cracks in top chord angle irons of longitudinal beams in panel 1-2 span structure № 4, not blocked by fishplates;
- Weak rivets on attachment of chord sheets of longitudinal beams;
- Swelling, corrosion, absence of rivets in profiles of ties of attachment of ties between longitudinal beams;
- The cracks in bottom chord angle irons of extreme cross beams (are blocked by angle fishplates);
- Local corrosion of horizontal sheets of the bottom chords of main trusses;
- Swelling in separate attachments of angle braces and racks to chords of trusses.

In the materials under review there are given the same classes of basic parts according to data of "Giprotransput" of 1974. The least rolls (K=6,1) have the least class. This class is the least for the bridge.

As a result there was made a conclusion about opportunity of passing of all the loads without restriction of speed. There is the list of measures on elimination of damages in span structures.

In conclusion of Diving Station of CP MPS 1984 there is no estimation of a condition of a underwater part of supports itself. The main attention here was paid to a condition of joints of a underwater and surface part. It is specified, that in view of leaky leaning of surface parts of covers (through levelling wedges) there began intensive destruction of concrete in zone of joints.

February 14 1984 there was made a notch in metal cover of a support # 24. It was found out, that inside top cover with diameter of 2,6 m. there is one more cover with diameter of 2,0 m., going in foundation part and densely attached by a horizontal ring sheet to the foundation cover in the cut level. Thickness of a wall of an internal cover is about 5 mm., and behind it there is the dense not destroyed concrete. Between covers (in place of the notch) there was found a dense mix of crushed stone with silty sand and traces of cement. This layer is 1,0 m high above the edge of foundation parts, and above it there is concrete, passing to rubble masonry.

On the basis of conducted opening of the support # 24 there was made a conclusion that the executive documentation does not correspond to the reality, since the builders, have ostensibly changed a design of a support, without reflecting it in design materials. It is assumed, that due to internal metal cover, the destruction of a masonry on large depth could not take place, and inside support there is the pole of strong concrete with a diameter about 2,0 m.. In the same 1984 Bridge Faculty of Novosibirsk Institute of Engineers of Railway Transport has given the conclusion about condition of joints between surface and underwater parts of supports of the bridge. In this conclusion there was marked that for the first time backlashes in joints were found out in 1951-52 Their width was 1-7 and depth 4 - 10 cm.

During the inspection of joints of supports ## 18 and 19 NIERT experts have found out damages of joints to the depth of more than 30 cm. The assumption was stated, that the depth of destruction of joints is limited basically, by the width of a ring platform on the top side of columns.

Table 1.6
MAXIMAL DEPTHES NEAR SUPPORTS DURING OPERATION PERIOD

Support	3	10	16	17	19	21	24
Year	1908	1911	1934	1934	1919	1969	1973
Depth,m	19.2	18	17	17	22	19	21

Table 1.7
MEASUREMENTS OF DEPTH FOR APRIL 1990

Date	Abutement	24	23	22	21	20	4	3	2	1	Abutement
1.04	0.6	4.1	4.7	4.9	3.8	4.3		0.5			0.5
10.04	0.4	3.5	4.5	4.6	3.6	4		0.3			0.3
17.04	5.3	4	5.7	6.7	6.4	5.3	0.4	1	0.4	0.4	1

II. - RESULTS OF INSPECTION OF BRIDGE

II.1. GENERAL INFORMATION

During 1990 - 91 group of the employees of 'Bridges' and laboratory of bridge constructions of MIIT made inspections of all designs of the bridge. Conducting of inspections preceded by detailed study of the engineering specifications for the bridge.

The primary inspection had been carried out in April 1990 and according to its results section of the preliminary conclusion was made. Repeated inspection was carried out in April and October 1991 During the inspection there were in details examined span structures, supports and basic parts, bridge floor of a design of consoles, line of electrotransmission), design of rolloing ways of inspection катания carriage; geodetic shootings of a longitudinal structure of the bridge are lead. For estimation of chemical structure of metal, its mechanical characteristics with the purpose of reception of specified effective parameters from a number of elements of span tests of metal were taken.

During the inspection of support on support 9 and 10 notches in plating of underwater and surface parts were made with the purpose of estimation of quality and durability of a masonry, determination of quality of metal of the plating, degree of its damage by corrosion, specification of the design.

Below in the present chapter results of all inspections are in detail stated, systematized and submitted in form of tables of damages, having large repeatability.

II.2. RESULTS OF INSPECTION OF SPAN STRUCTURES

II.2.1. RESULTS OF INSPECTION OF MAIN TRUSSES OF CHANNEL SPAN STRUCTURES

In result of inspection the following damages were found out:

1. Weak rivets attachment, mainly of long-drawn angle braces and supports to top units of trusses.

- 2. Frustration of rivets and tear off of their heads in attachments of elements of a connecting lattice between branches of angle braces and racks (suspension) of main trusses on all without exception span structures. Except clearly expressed easing of rivets, the signs of their frustration are also rust circles, cracks in layer of a paint around of the heads and flows of a rust from under rods. The list of found out frustration of rivets is shown in Table 2.1.; Thus, in the table quantity of weak rivets and rivets with teared off heads in each branch of elements of all span structures are specified separately. Except frustration specified in the table, there was found out, one rivet with teared off head in attachment of a filling lattice of spacer between top units 4` on SS № 19
- 3. On all the span structures many rivets, the attachment of connecting rods in units between branches mainly of compressed angle braces are replaced with bolts, that testifies to mass frustration of these rivets having place early. The list of elements and quantity of rivets replaced with bolts are shown in Table 2.2.
- 4. In attachment of separate suspensions and angle braces of the main trusses to top units there are the rivets with defective heads: not formed, moved from their axis, connecting by part of surface of joining places and etc. Defects of heads of rivets are of building origin, however their presence can promote frustration of attachment (easing of rivets, tears off of heads). The list of places, where defective rivets are found out, is given in Table 2.3..
- 5. On majority of span structures corrosion damages are as follows:
- Corrosion and extention of separate rods, uniting branches of angle braces;
- Spot corrosion and swelling of connecting rods of the bottom chords (so on SS # 1- at H12 13 of the left-hand truss corrosion makes up to 10 % of of a rod section; On SS 4 at HO1; H12 13; H13 14 of the left-hand truss);
- The corrosion of heads of connecting rivets of horizontal places inside boxes (headers?) of the bottom chords, caused by stagnation of water due to choking or absence of drainage opennings (so on SS # 2 in panels H 8 9 10 of the left-hand truss drainage opennings are absent, water becomes stale, 40 70 % of rivets heads have corrosion up to 10 %; on SS No 7 in HZ 4 of left-hand trusses 50 % of rivets have the corrosion of 5 10 %);
- Swelling between connecting shels of angle irons of suspensions near bottom chords of trusses;

- Swelling of central profiles in top units of trusses in places of abutting to them mainly of long-drawn angle braces B 3 ` 4; B 10 11' (so, on the SS № № 1 4 this phenomenon is expressed best of all);
- Swelling between bottom chords of cross beams and profiles of longitudinal ties of the main trusses.
- 6. In some elements of the bottom chords there take place swelling of vertical sheets from their plane. This phenomenon is expressed most of al on the SS # 5 in H8 9 of the left-hand trusses, where an outside sheet has a bend with length of 60 cm with arrow of 3 cm.
- 7. Some elements of main trusses and elements of a connecting lattice have curvatures:
- On the SS # 3 S7 7 of right trusses there is curvature (corner 3 4 ') near top unit on distance of 1 m. from profile;
- On the SS # 7 two top elements of a connecting lattice B 1` 2 of right trusses are curved with an arrow of 7 cm, two bottom connecting plates C9` 9 of right trusses are curved downwards;
- Deflection of filling rods in details of cross ties between trusses: on the SS № 2 in unit 7 (fourth cross from above); on the SS # 20 in unit 5 (third cross from above);
- On the SS No 6 the angle brace B2 3 ` of a left-hand truss has a curvature towards an axis of span structures with an arrow $f_{\rm max} = 19$ mm.;
- On the SS # 7 angle braces B6 7 $^{\circ}$ of a right truss has a curvature towards an axis of span structures with an arrow $f_{\rm max}=19$ mm.; and angle brace B9 $^{\circ}$ 10 of left-hand truss with an arrow of $f_{\rm max}=11$ mm.

Table 2.1
AK RIVETS AND RIVETS WITH TORN OFF

Span	Elements and Quantity	of Frustrated Rivets		
Structure	Left Truss		Right Truss	
#	Internal branch	External branch	Internal branch	External branch
	1 2		3	4
	1 B1`-2-2	B12-13`-1	B10-11`-1 (Head tear-o	ff)
V.	2 B12-13`-2 _.			
	3 B3`-4-1		B10-11`-2	
	4	B10`-11-1	B10`-11-1	
			B12-13`-2	
	5 B3`-4-1			
/	6 B3`-4-1	B10-11`-1		B12-13`-1
		B12-13`-2		
	7 B1`-2-2			
	8 B10-11`-1			B1`-2-1
				B8-9`-1
	9		B3`-4-1	
			B10-11'-2	
			B12-13'-1	
1	0	B8-9'-1	B3'-4-1	B12-13'-1
		B10-11'-1	B5'-6-1	
1	1 Bl'-2-1			B12-13'-3
	B8-9'-1		-	
1	2 B12-13'-1	:w	B3'-4-1	-
	B2-3'-1(absent)			
1	3 B3'-4-1	B1'-2-2	B1'-2-1	2
	(Head tear-off)			
1	4	B12-13'-1		B1'-2-1
				B10-11'-1
				B12'-13'-1
1	5 B10-11'-2	-	-	Bl'-2-1
	6 Bl'-2-1	-	B1'-2-1	B12-13'-1
•	B12-13'-1		B12-13'-1	1000
			B9'-10-1(abs.)	
1	7 BO-1'-1	B1'-2-1	B3'-4-1	
•		B9'-10-1(abs)	ATT. 17 (A)	
18	B10-11'-1	B1'-2-1	Bl'-2-1	C11'-11-1
	-10 11 1		D	~

				27
1	2	3	4	5
20 Bl'-2-1	B1'-2-1	-	-	
B12	2-13'-1 B3'-4-1			
21 . B10-11'-1	B1'-2-1	B1'-2-2	B3'-4-1	
B12-13'-1	B3'-4-1			
	B10-11'-1			
	BO-1'-1			
22 B1'-2-1	-		B10-11-1	
			B12-13'-1	
23 B3'-4-2	C1'-1-1	BS'-6-2	B1'-2-2	
B10-11'-1	B1'-2-1	B10-11'-1	B5'-6-1	
	B3'-4-1			
	B12-13'-1			
24	3.	B8-9`-1		
25 B3'-4-1	12	B5'-6-1	BO-1'-1	
B8-9'-1		B10-11'-1	B1'-2-1	
		B12-13'-1	B3'-4-1	
			B5'-6-1	

Table 2.2. INFORMATION ABOUT REPLACEMENT OF WEAK RIVETS BY BOLTS IN ATTACHMENTS OF CONNECTING PLANKS IN ANGLE BRACES OF MAIN TRUSSES

Span	Truss	Quantity of	f replaced	rivets in an	ngle braces		
Structure							
##		B2-3'	B4-5'	B6-7'	B7'-8	B9'-10	B11'-12
1	2	3	4	5	8	7	8
1	Left - 、		2	2	1	2	
	Right		1	1	1	2	-
2	Left		2	1	2	2	
	Right	-	2	2	1	1	-
3	Left		1	2		1	2
	Right	1	-	-	2	1	
4	Left		2		1	2	
	Right	-	2	1	2	2	
5	Left -		2		1	3	
	Right	-	3	1	1	3	-
6	Left -	-	3	3	3		
	Right	-	3	3	2		- s
7	Left -		3	2	2	2	1
	Right	-	3	3	2	3	1
8	Left -		2	1	1	1	
	Right		2	1	1	2	
9	Left	-	2		1	2	
	Right	1	2	1	1	2	
10	Left		2		1		
	Right	-	2	2	2	2	
11	Left		2		2	2	_
	Right	-	2		1	1	
12	Left		2		_	2	
	Right	-	3		2		
13	Left	1	3		1	3	1
	Right	1	3		2	2	1
14	Left		3	1	1	1	
	Right		3	1	2	3	
15	Left		1	1	1	1	
	Right		3	1	1		2

1	2	3	4	5	8	7	8
16	Left Right	- 1	- 1	1	- 1	1 1	- 1
17	Left Right	-	1 2	1 -	- 1	1 2	1 1
18	Left Right	-	2	2 3	2 2	2 2	1 1
19	Left Right	1	3	- 2	- 2	2 3	1
20	Left . Right	- 1	3	2 1	2 2	3	1
21	Left Right	- 1	3	2 2	2 2	2	1 1
22	Left Right	1	2	2 2	2 3	3	1 2
23	Left Right	2	2	2 2	2 2	3	1
24	Left Right	1 1	3	100	1	3	- 2
25	Left Right	1	1	2 2	1 2	1 2	- 1

Table 2.3. RIVETS WITH DEFECTS IN ATTACHMENTS OF MAIN TRUSSES TO TOP UNITS

Span Structure	Truss	Element	Branch	Quantity	Outside or
##					inside
1	2	3	4	5	6
10	Left -	C 7' - 7	Internal	2	Inside
	Left -	C 11' -11	Internal	4	Inside
	Left -	C 3' - 3	Internal	1	Inside
11	Left	C I1' -11	External	1	Inside
	Left	B 5' - 6	External	1	Inside
12	Left	C 7' - 7	Internal	1	
	Left	C 7' - 7	External	1	Inside
	Left	C 9' - 9	Internal	1	and
	Right	C 7' - 7	Internal	1	Outside
13	Left	B 3' - 4	External	2	Inside
14	Left -	C 9' - 4	Internal	1	Inside
	Left -	C 11' -11	Internal	1	Inside
15	Left -	C 9' - 9	External	1	Inside
	Left -	C 9' - 9	Internal	1	Inside
	Left -	C 11' -11	Internal	1	Inside
18	Left -	C 7' - 7	Internal	2	Inside
20	Left -	B 8 - 9`	Internal	4	
	Left	C 9' - 9	Internal	3	
	Left	B 9` - 10	Internal	1	
	Right	C5` - 5	Internal	1	
	Right	C 9' - 9	Internal	2	
22	Right	C 7' - 7	External	1	Inside
24	Left	C5` - 5	External	1	
25	Left	C5` - 5	Internal	1	Inside
	Left	C 9' - 9	Internal	1	

II.2.2. RESULT OF INSPECTION OF BRIDGE ROAD OF CHANNEL SPAN STRUCTURES

Inspection of the bridge road have come to outlight defects and damages of:

- Longitudinal and cross beams;
- Ties between beams and rivets of their attachment;
- "Fishes" and rivets attachment B to P;
- Structures of rolling track for inspection carriage. More over there was fixed quantity and location of elements of strengthening of the bridge road structures, as:
- High-strength bolts in attachments, delivered instead of rivets;
- Presence of overlapping of cracks and holes in beams.

In result of inspection the following damages were found out:

1. Holes under bridge bars in horizontal shelves of the top chord angle irons of longitudinal beams. In total on all the span structures there is found out 13 holes, located mainly outside angle irons beams. 12 of them are overlapped by angle fishplates with atachment of the last by high-strength bolts (in 11 cases) and rivets (in one case), and one - in right B2 - 3 on SS # 16 is not overlapped (Fig.2.1.) evidently all holes had been formed, yet before strengthening of longitudinal beams by the top horizontal sheet. In Table 2.4. Data about the location were available holes and a character of their overlapping are shown.

Table 2.4 INFORMATION ABOUT HOLES IN CHORDE SECTIONS OF LONGITUDINAL BEAMS

Span	Longitudal	Panel	Branch	Position along	Caracter of
Structures	beam		•	the panel,	the overlapping
Structures bear ## 1 Righ Left Left Righ 3 Left 4 Left 9 Left Left Left Left Left Left Left Left	1	1	İ	counting from	and number of
	l		į	the beginning	fixing boltes in
					B - chorde
	1 Right	2 3.	External	1./4	Angle iron
	Left :	4 5	External	1./2	Angle iron
	Left	5 6	External	1./5	Angle iron,6 HSB
	Right	7 8	External	1 <i>J</i> 4	Angle iron,5 HSB
	3 Left	2 3	External	3./4	Angle iron,9HSB
	4 Left	4 5	External	1./3	Angle iron,5 rivets
	8 Left	10 11	Internal	1./4	Angle iron,5 HSB
· ·	9 Left	4 5	External	1./2	Angle iron,8 HSB
	Left	8 9	External	3./4	Angle iron,6 HSB
	Left	9 10	External	3./4	Angle iron,6 HSB
1	2 Right	2 3.	External	near P2	Angle iron,5 HSB
1	3 Right	0 - 1	Internal	1./3	Angle iron,5HSB
1	6 Right	2 3.	External	2./3	Not overlapped

2. Cross fatigue cracks in horizontal shelves of the bottom chord angle irons of cross beams near their attachments to main trusses (Fig.2.2.). The cracks arise at edge of a shelf and are distributed to head of an angle iron. All cracks are located at edge of profiles of longitudinal ties of main trusses, where in structure of section of the bottom chord of a cross beam there are only the angle irons, since the horizontal sheet is broken off directly before profile. Thus in this zone the moment of resistance of a chord in horizontal direction appear much less, than on connecting sites. Besides follows to note, that all found out cracks are located only in four cross beams nearest on both ends span structures. Namely in them there are the heaviest deformations (bending moments in horizontal plane) because of inclusion of beams of the bridge road in joint work with main trusses. Set of the specified factors with rather high cyclicity of change of tension results in occurrence of described cracks.

On all the span structures in last four cross beams (Π 11, Π 12, Π 13, Π 14) zones of formation of cracks notwithstanding of their presence or absence - are attached by angle by fishplates with attachment thereof by high-strength bolts (Fig.2.3.). In initial cross beams—such strengthening is not present (at exception of Π 1 on SS # 9, near left-hand truss from the side—of panels 1 - 2).

Information about found out cracks in angle irons of cross beams is shown in Table 2.5.

Table 2.5

Span	## of	Near	Angle iron P	Lenrth of	Mark of
Structure	cross beams	which	from the side	crack,	overlapping
##		truss	of panel	mm	AT AT AT
1	2	3	4	5	6
1	P1	Right	12	30	No
	P2	Right	2 3	30	No
8	P13	Right	13 - 14	*	Yes
9	P1 .	Left	1 2	*	Yes
	P12	Left	11 12	*	Yes
11	P12	Right	12 13	*	Yes
12	P14	Left	13 - 14	*	Yes
13	P0	Right	0 - 1	70	No
13	P1	Right	0 - 1	30(Fig.2.4.)	No
	P13	Right	12 13	*	Yes
	P14	Left	Cantilever	*	Yes
14	P11	Right	10 11	*	Yes
17	P13	Right	13 - 14	*	Yes
18	P0	Left	0 - 1	25	No
	P1	Left	0 - 1,1-2	60,40(Fig.2.:	No
	P2	Right	2` - 3		No
	P3	Right	2 3	20	No
	P13	Left	13 - 14	*	Yes
	P14	Left,Right	13 - 14	*,*	Yes, yes
20	P13	Left	12 13	*	Yes
21	P0	Left	Cantilever	20	No
	P11	Right	10 11	*	Yes
	P14	Right	13 - 14	*	Yes
25	P13	Right	13 - 14	*	Yes

^{*} Length of the crack was not measured, because it had been closed from the top by angle iron of oveerlapping

3. Cracks of the top "fishes" of attachments of longitudinal beams to crossbeams. All the cracks are found out in five "fishes" on three span structures they are located, as a rule, along chord of a cross beam from edges of rivet opennings of the first row of the attachment of fishes to chords of longitudinal beams on whole or part of width of a "fish".

On the SS # 21:

- In attachment of right B 11 12 to P 12 the crack begins at the edge of an openning of the first row and leaves on the outside edge of the "fish" » (Fig.2.6.); on internal edge of a "fish" the cracks are not found out. Here has place a tear off of the head of the second rivet of attachment of a "fish" to the top chord B (Fig.2.6.).
- In attachment of the left-hand B 11 12 to P 12 the crack dissects the "fish" along whole its width on the first row of rivet of opennings, in zone of formation of a crack there is also marked a strong corrosion of the "fish".
- In attachment of left-hand B 13 14 to Л 13 crack is similar to the described above (Fig.2.6.) on SS # 23 in attachment of the right B 1 2 to P 1 a crack begins from the edge of an openning of a rivet of the first row, crosses the "fish" along the whole width and leaves on its internal and outside edges. Thus, from internal side the crack leaves at the feather of a chord angle iron B opposite to the of a rivet attachment of the "fish" second from the P, and goes obliquelly under the small corner to feather of an angle iron up to internal edge of the "fish". From outside side near a feather of the chord angle iron the crack bifurcates: one passes along the feather, other leaves on the edge of the "fish" near chord P.

On the SS # 25:

- In attachment of the right B 10 11 to P 11 from outside side hanging down over the chord angle iron of an edge of the "fish" is cut off (fig.2.7.); from internal side the crack leaves at the feather of an angle iron along chord P and finishs not reaching 4 cm up to an edge of the "fish".
- 4. Frustration (easing), tear off of heads, absence of rivets of attachment of "fishes" to the top chords of longitudinal beams:
- On SS № 21 in attachment of the right B 11 12 to P 12 tear off of the head (from below) of a rivet of attachment the second from the P from outside side of B

- (Fig.2.6.); precisely such the damage is marked on SS # 25 in attachment of the left-hand B0 1 to the P 1;
- On SS # 24 in attachment of the right and left-hand B 13 14 to P 14 inside and outsidethere are absent rivets the first from the P (total 4 p.); precisely such a picture has a place on SS № 25 in attachment of both B0 1 to P0;
- On SS № 25 in attachment of the left-hand B 11 12 to the P 11 from internal side there is weak rivet which is the third from the P and which simultaneously with the fish attaches yet a profile of longitudinal ties between B.
- 5. In attachments of longitudinal beams to cross beams many rivets both in the wall P, and in the wall B are replaced with high-strength bolts, the separate rivets have easings or tear off of heads.
- Below there are shown the information about damaged and replaced rivets; thus the account of rivets begins from the bottom chord P including the rivets in a "table".

There are the following damages of rivets in the B wall:

- On the SS # 4 in the attachment of the right B to P 6 from inside the fifth rivet the head is torn off (a bridge maintenance team immediately replaced this rivet with high-strength bolt);
- On the SS # 19 in attachments right B to the P12 and P 13 outside there are the sighns of easing of the 2d, 3d, and 4th rivets;
- on the SS # 22 in attachment of the right B to the P 11 outside there are the sighns of easing of the 3d rivet;
- on the SS # 23 in attachments of the right B outside to:
- -P 2 the fifth rivet has signs of easing (the next fourth rivet on HSB);
- -P 11 signs of easing of the 4-th, 5-th, 6-th rivets;
- -P 12 signs of easing of the 2-nd and 3d rivets;
- on the SS # 24 in attachment of the right B to the P 5 outside the third rivet has signs of easing (next from 4-th to 7-th are replaced for HSB).
- The list of rivets, in the wall P, replaced for high-strength bolts is given in the Table 2.6.

Table 2.6.
LIST OF RIVETS REPLACED FOR HIGH-STRENTH BOLTS IN THE WALL OF CROSS BEAM

Span	Longitud.	Side	Nr.Nr. of	relaced riv	ets in PNr.N	lr (accour	nt from b	elow)							
Structure	beam														
##	Right Left	External Internal	P 1	P 2	P 3	P 4	P 5	P 6	P 7	P 8	P 9	P10	P 11	P 12	P13
1	Left	Internal		4,5	<u> </u>	<u> </u>	ــــــــــــــــــــــــــــــــــــــ				<u> </u>			6	-
	1200	External	9=1	5	_	6	2,4,5	4	-	4=8	4=6,8		8	4,5	4=6
	Right	Internal	4	4,5		-	2, 1,	4,5	7,8	4			-	4,5	0
	Right	External	4: 7	-				4 ,5, 7	-	-	4,5	2		-	_
2	Left	Internal	9	4,5		-		- ,5, ,	1.00	-	-	-	9 -	2 -	4,5
_	Bott	External		4:6,8	_	4	_	4	8,9	6	4,8	4,5	_	_	6,7
	Right	Internal	12	4	12	4,8	_	4	-	-	-	-,5	_		-
	e	External	4:9	4,5	12	6	4:6	-	-		_		-	9	
3	3 Left I	Internal	-	6	4,9	9	-	4,5	_	-	5		-	-	
	DOIL	External	_			Ĺ	_	4,5	_	_	-	_	_	_	1=3
	Right	Internal	_	20	32		200		-	-	12	2		10	
	Kigik	External	-	-	(17) 112	151				-	_			-	
4		Internal	-	4	4,7	-	_	4	4,6=8		175	4=9		6	4,5,8,9
7	ixit	External	=	45	5	47	4,5		4	5	4	3=9	5	-	4=9
	Right	Internal	59	4:9	4,5,7: 9	5=8	4,5	5	E .	4	5=8	6=8	4=7	8=10	4=9
	Kigiit	External	4=6	4:7	4,6	4:6	-,5	4	177.4 -	-	5,6	0-0	-	4=8	4=6
5	Left	Internal	-	4,7	4,0	46		7	4		5,0		4,7	-	-
	Len	External	-		6	4		-	T.	5	12		4	4=7	-
	Right	Internal	8	= =	U	4	4=9	20	E .		72	<u></u>		-	-
	Kigik	External	-	4	45	-		_	_		4	4	_	4	4=9
6	Left	Internal		-		5=7	4	-	_	4	-	4,7,9,10	_	4	4,5
	1,010	External	-			4,5,8	7	2		575 200		-	-	-	-,5
	Right	Internal	-	2	4	2	4	4	-	4,5	92	4,5	4,5	-	4
	Kight	External	(5)	4	4		4	4	4	4,3	S	4,5	4,5		
		External	-	4	-	4	-	-	4	4	\ _	-	-	, , , ,	(= .)

Span	Longitud.	Side	Nr.Nr. of 1	elaced rive	ts in PN	lr.Nr (acco	ount f	rom be	low)									
Structure ##	beam Right	External																
	Left	Internal	P 1	P 2	P 3	P 4	T	P 5	P 6	P 7	P 8	Р9	P10		P 11	P 12	P13	
	7 Left	Internal			100				4	45,7,9	-	-	-4		-		6 -	
		External	5	4=6	-	5		•	-	-	-	-	-		4	-	-	
	Right	Internal	-		48	-		-	4	45	45	-	·		-	-		
		External	4	5 6	45	~		***	45	-	4=6	-				7.8	4.6	
;	8 Left	Internal	S=3	3	-	5		6	-	5	-	4	2		-	-	-	
		External	-	8.	-	-		-	-	4,5	4	-	*		-	-	-	
	Right	Internal	-				9	4=6	-	-		-	4					
		External		-:	6	5		-	-	4	6	-	45		-	-	4	
	9 Left	Internal	-	6	6		4	7=9	2	-	45	-	4,9	4.6		4	4.8.9	
		External	4,6.9	*	5	4		4	4	-	-	4,5		4		6 4	8.9	
	Right	Internal	-	-	-			(*)	-	-	4, 5	4,5	-		-	4	4	
		External	4	-		4		•	4, 5	-	4		4.6.9		4	4=7	8.9	
10	0 Left	Internal	-	49	4	-		4	49	4	4	9	-	8.9		8.9		
		External		-	-	-			-	4	4		ě		-	-	4	
	Right	Internal	-	-		-		4	8	9	4	9	-	4.9			4 8.9	
		External	5	4, 5	-	7.4			4= 6	4	(4);	200	4	4.5		-	1-1	
1	1 Left	Internal	-	5	45	4		5	4=6	4	89	-	-		-	9	4	
		External	-	4=6	56	4			-	6	-	-		5	-	4	4.7=9	
	Right	Internal	7=3	45	4	8		4	-	(4)	5	: ·		4	4	-	=:	
		External	: -	-		4 4		4			-	9			-	•	-	
13	2 Left	Internal	4,8,9	4,8,9	4,9	4		4	4	4	4,8,9	4,8=10	4		-		8,9	
		External		-		89		-	#-C	 8	8,9	4,8	-		8,9	4	.#S	
	Right	Internal	4	4	4	45		-	4,9		9	4,5	4		-	2.7=9	8,9	172
	2.1.6	External	4	4	-	45		4	-	-	4	4	4		4	4		-
1.	3 Left	Internal	4	4	-	-			-	-	-	4	_		8,9	4	-	
	D' 1.	External	4=6	ä	•	-		-	-	-	-	-	-		4	4	•	
		Internal	*	-		89		-	45	9	4,8,9	8,9	9			4 5.7=9	-	
_		External	(*)	-	4	45		-		4	4	4	-			8 4=6	-	

Span	Longitud.	Side ·	Nr.Nr. of r	elaced rive	ets in PNr.1	Vr (accoun	t from b	elow)							
Structure	beam		l												
##	Right	External													
	Left	Internal	P 1	P 2	Р3	P 4	P 5	P 6	P 7	P 8	P 9	P10	P 11	P 12	P13
14	Left	Internal	9,10	.=::	8:10	45,8,9	9	9,10	9	-	9,10	-	85	-	4=9
		External	-		6= 8	4: 8	4,9	-	-	343	: -	# 8		::=:	-
	Right	Internal	-	-	•	4,8,9	8,9	-	-	-	18		-	-	-
		External	10	9,10	-	•	10	-	-	9	-	4	4	-	-
15	Left	Internal	-	5		-					: :	- 0	· ·	-	-
		External	: 	-	-	-	•	-	-	•			-	-	-
	Right	Internal	-	-	E-2	-	4	-	2	121	-	-	4,7	-	-
		External	-	-	-	-	-	-	-	-	-	-	-	•	-
16	Left	Internal			-	-		-	-	-			-	-	·•
		External	141		:= ;=:	-	-	*	-	940		-		4 -	
	Right	Internal	3	-	-	-	-	-	-	-	-	<u> </u>	-	-	*
	274	External		-	35 -2 5	-	-	.=.		 6	-	-	: -		
17	Left	Internal	(= (-0		-	~:	9	(*)	(= 0)	-	-	-		(**)
		External	S=0	*	::=:	*	20	-	: <u>-</u> :	-	: <u>*</u>	-	12	-	-
	Right	Internal	-	9,10	-	-	-	-	90	20	-	=	+		-
		External	-	-	S=0	-		-	37.3	.			. 		.73
18	Left	Internal	-	-	3 4 3	120	-	948	-	; = 22		-	3 4 0		5 # 35
		External	· <u>·</u>	-	-	-	_	-	<u>~</u>	27	-	-	126	-	-
	Right	Internal	-	<u> </u>	4	-	-	-	-	-	-	ä	-		
		External	-	-	-	-	**	-:	-	- 1	: - :	-	-		.
19	Left	Internal	-	2	140	-	-		2-3	-	7-2	-	-	4.5	
	1001 570	External		-	(#)			**		-))	8		9 4,5	-
	Kight	Internal	•	-	-	-	-	*	7	-	-	-	-	•	-
20	Left	External Internal	-	-	-	-		-	-	-	-	-	-	2	-
20		External		₹ •	•		*:	•	<i>≅</i>	-	:= :=:		· ·	* 3	-
	Right	Internal	*	-	12	20	2	-	2	-	940	-	-	180	*
		External	-	4	-	-	-	*	-	-	-	-	-	-	2

Span	Longitud.	Side	Nr.Nr. of r	elaced riv	ets in PNr.	Nr (accou	nt from be	elow)		100					
Structure	beam	100 mm 100 mm													
##	Right	External													
	Left	Internal	P 1	P 2	P 3	P 4	P 5	P 6	P 7	P 8	P 9	P10	P 11	P 12	P13
21	Left	Internal	-	·	-	4=7	4,5		15	e *		4=8	-	-	-
		External	-	(-	-	4=8	4=6,,9	5	-	-	÷.	-	-	=	4
	Right	Internal	-	(=)	-	2	-		-	N=1	-	-	4	<u>~</u>	-
		External	H		¥	-	5	•	-	4	5	•	E	÷	
22	Left	Internal	¥		=	1.		3.00	· -	4	-	·	-	4=9	
		External	-		-			-	-	-	-	5	-	4=6	
	Right	Internal	-	-	×	-	24		(4)		-	-	4	4,5	::=:
		External	2	690	3	1+	-	0.00	*	S * S	8	-	â		5 4
23	Left	Internal		4,5	5	· ·		4=9	8 5	(10)	-	: * :		4=8	4=6
		External	6	4=7	, n ×		-	4,8	-	8=1	-	6	~	4=6	4
	Right	Internal		-		12	22	-	4,5		2	-	2	: 2	-
		External	=	-	7=9		•	-	-	4,6,7	4	4=7	Ę	-	•
24	Left	Internal	-	-		45	:⊕	4	3 5 7	2#1	-	-	-	4	0₩
		External	-	•	4=7		S#3		45		-	4,6,7,9	4	-	-
90	Right	Internal	2	-	.5	12	÷.	7. * 1	5	-	2	5,6	6.7	-	4,5
		External	4,5		4=6	4,5	4=7	•	45	*	4	9-Apr	5,6	6=9	4,5
25	Left	Internal	-	:=:	-	4	:*:		45	45	4	4=6	5	4,5	
		External	4=7	-	_	9	4=6	45	-	4		4=7	-	4=6	4=8
	Right	Internal	82		8	45	-	4	-	45	2	4=6	· ·	2	-
		External	-	-	-	-	-		-	4, 5	ē.	-	-	-	4,5

Easing and the defects of rivets in the wall B (incleding the ones of the wall "tables") are found out:

- on the SS # 19 in the wall B 1 2 at P 2 there is no the first rivet (openning is not completely drilled);
- on the SS N_2 23 in the wall of the right B 1 2 at P 1 there are loosed the rivets (from the fourth to the ninth,) along thr feather of an angle iron of the attachment ^ there are the traces of a rust (in attachment of this B to the P 1); the "fish" is also strongly damaged (See . P.3.);
- on the SS # 23 in the wall of the right B 7 -8 at P 8 there are signs of frustration of fourth, fifth and sixth rivets.

The list of the rivets in the wall 6 replaced for HSB, is given in table 2.7.

Table 2.7. LIST OF RIVETS REPLACED FOR HIGH-STRENGTH BOLTS IN THE WALL OF LONGITUDINAL BEAM

Span Structur ##	Longitudin beam (left,right		Strengthenin to the P ##	Numbers(from the bottom) of thr opennu\ings with HSB)
2	Left	4=5	B4	1
	Left	7=8	B8	4
4	Left	11=12	B12	4;5
	Right	8=9	В9	3
	Right	9=10	B10	3;4;5
5	Right	4=5	B4	3
	Left	7=8	В8	4
6	Left	11=12	B12	3
9	Right	7=8	B8	4
	Left	10=11	B10	3;4
12	Right	3=4	B4	4
13	Left	9=10	B10	3
15	Left	9=10	B10	4
16	Right	2=3	В3	4;5;6
	Right	11=12	B12	4;5;6;7
17	Right	3=4	B4	4;5.
	Right	5=6	В6	4;5;6
20	Right	11=12	B11	3;4;5

- 6. Frustration and defects of the top chord rivets and longitudinal beams:
- on the SS # 9 in the left-hand B 4 5 about P 5 there are signs of frustration (flows of a rust from under the chord angle iron) in the three rivets nearest to the P;
- on the SS # 11 in right B 13 14 in middle of the panel there is one weak rivet (attaching simultaneously both chord and angle iron of rigidity);
- on the SS # 20 in left-hand B 9 10 about P 9 there is no rivetwhich is the first from the P (there is no openning in vertical sheet of a beam);
- on the SS # 1 in the left-hand B 2 3 (second half of panel) nine rivets are replaced for HSB.
- 7. Weak and absent rivets in "caps " of longitudinal beams (rivets, connecting the top angle irons to a horizontal sheet).
- On many span structures there is marked a defect connected with work on strengthening of the top chords of beams there are missed about two three rivets of a cap » 6 on every site about edges of rigidity in middle of the panel (fig. 2.8.).
- In these places there are the backlashes between angle iron and sheet. So, on the SS № 12 in middle of panels 3 4; 4 5; 5 6 of the left-hand B there is missed on one rivet under edge of rigidity; on the SS # 23 in middle of the panel 2 3 of the left-hand B there are missed three rivets cm. Fig 2.8).
- The list of places, where there are found out weak and replaced for HSB rivets of "caps" of the B, is shown in table 2.8.

Table 2.8.

WEAK AND REPLACED RIVETS IN THE "CAPS" OF B

Span Structures ##	Beam	Panel	Side	Quantity of weak rivets	Position along the panel, counting from the beginning
1	Right	78.	External,internal	1;1	3./4;3/4
	Left	2 3	External	2	1./3
9	Left	8 9	External, internal	3;3	3./4;3./4
13	Right	0 - 1	Internal, external	3;2	1./3
15	Left	0 - 1	External	1	1./4
16	Right	5 6.	External,internal	3;3 gaps between angle iron and sheet	2./3;2/3
19	Right	1011	External	1	1./2
20	Left Right	1213	External	1;1	1./5;1/5
21	Left	78	Internal	1	1./5
l	Left	89	External	1	3./4
	Right	89	External	1;1	1./2;3/4
	Left	13-14	External	1	3./4
22	Right	34	External	1	1./4
l	Right	45	External	1	3./4
l	Left	45	External	1;1	1./2;3/4
	Left	45	Internal	1;1	1./2;3/4
	Left	1112	External,internal	3;1	1./2;1/2
	Right	1213	External	1	1./2
	Left	13-14	External	1	1./2
ARREST OF THE PARTY OF THE PART	Left	1213	External	1	1./4
25	Left	45	External	1	1./4
	Left	1112,12-13	And the second control of the second control	2 HSBper each	1./2;1/2
	Right		External	2 HSB	1./2

- 8. Rivets, frustrated, defective and replaced for HSB of the attachment of elements of the top ties between longitudinal beams to profiles and profiles to chords B are marked:
- on the SS № there is no head of one rivet of attachment of profile of ties to chord B 8 9 at P 8;
- on the SS #9 one weak rivet of attachment of the second diagonal of the panel of profile in the middle of length of the left-hand B 4 5;
- on the SS # 11 two weak rivets of the attachment of the profiles of ties to chord of the right B 13 14 in middle of the panel (Fig.2 ..9), profile has significant horizontal movings at passing of a load; above this place a joint of a working rail is located:
- on the SS # 12 there is one defective (poorly formed) rivet of attachment of the profile of ties to chord of the left-hand B 6 7 in middle of the panel;
- on the SS № 17 there are two weak rivets of attachment of profile of ties to chord of the left-hand B 4 5 in middle of the panel (Fig.2.10.);
- on the SS # 22 rivets of attachment of profile of ties to chord of the left-hand B 13 14 at P 14 are replaced for HSB;
- on the SS # 25 there is one weak rivet of attachment of profile of ties to chord of the left-hand B 11 12 at P 11 (simultenoiusly these profile attach the "fish" »);
- on the SS № 7 there is defective (unriveted) rivet of attachment of profile of the top spacer to chords of the left-hand and the right B0 1 in middle of the panel.
- 9. On the row of span structures there are observed a swelling of profiles of attachment of bottom spacers between B in middle of panels and tear off of heads of rivets of their attachment (fig. 2.11):
- on the SS # 14 to right B 2 3;
- on the SS # 15 to right B 3 4, 6 8 9, to left-hand B 11 12, B 12 13;
- on the SS # 17 to right B 7 8;

- on the SS B # 18 to right B 5 6;
- on the SS B #19 to right Б7-8,БИ 12;
- on the SS # 20 to left-hand B 7 8, B 9 10;
- on the SS № 24 to left-hand B 4 5, B 5 6, B 13 14, to right B 4 5, 6 13 14;
- on the SS # 25 to right B 2 3, B 6 7.
- On the SS # 1 there is no head (from above.) of one rivet of attachment of bottom spacer between B to profile in middle of the panel and the right B 4 5.
- 10. The corrosion damages meet on all the span structures and are expressed in kind of:
- surface and spot (cometimes through) corrosion of elements;
- swelling between elements in compound packages and in places of the attachment.

Everywhere there is marked corrosion of fishes of attachment of longitudinal beams to cross beams to the depth up to 5 mm. (for example, on the SS # 1 the "fishes" of attachment of the right B to P 3, P 4, P 10 have corrosion holes with depth of 4 - 5 mm.; on the SS # 21 "fish" of the attachment of the left-hand B 11 - 12 to P 12 have strong corrosion along chord P and crack on this direction).

In many places there is spot corrosion and swelling of chords of cross beams about their attachment to main trusses (for example, on the SS # 1 - in P 6 at right truss there is corrosion damage with depth of 2 mm. On length about 5 cm, on the SS # 3 in P 10 the left-hand truss has swelling and stratification of the bottom sheet).

The through corrosion of profiles of attachment of longitudinal ties between B in middle of the panel is found out in left-hand B 4 - 5 and B 7 - 8 on the SS # 1

11. Damage of angle irons of suspension of rolling tracks of inspection carriage to cross beams: cracks, complete break, easing of rivets attachment. Cracks and the breaks of angle irons are located, as a rule, in places bending (FIG.2.12, 2.13). Near each cross beam the rolling tracks (each string) is attached by two inclined and two vertical angle irons, connecting accordingly bottom chord and a wall P to a

wall of channel iron of a track. Thus on each span structure there are present 60 inclined and vertical angle irons. Quantity of damaged ones separately for the left-hand and the right sides and the character of damages is specified in table 2.9.

As it is visible from the table, there are damaged 34,8 % from total of angle irons of rolling track suspension and number there of is increasing rapidly.

12. In attachments of the bottom basic "table" to the chord B and connection it with lower "fish" on some span structures rivets are replaced on HSB (fig. 2.14.). The heaviest quantity of HSB is installed on the SS # 14: 207 pieces in attachments to bottom chord B; 224 pieces in connection of the top angle irons and the wall of hte table itself. According to information, received in a distance department, the works on installation of HSB were carried out during strengthening of attachment B to P ("table") in connection with bad quality of the previous riveting.

II.2.3. RESULTS OF INSPECTION OF COASTAL SPAN STRUCTURES

The survey of stationary basic parts has not revealed in them—any defects and damages. During the survey of mobile basic parts there were fixed mutual positions of the bottom balance weight, carriage with rolls and bottom basic plate. The gaugings were made in solar windy weather at positive temperature of air about 20° C. Besides they paid much attention to integrity of axial bolts of fastening of ralls in carriage, condition of rolling. The gaugings and survey were made on majority of basic parts, the other parts were not inspected in details due to impossibility of access to the rolls because of design features of casings. So at all basic parts of span structures № № 21 - 25 casings are all-riveted, not demountable, at some other covers of casings cannot be open. By results of measurements of a position of elements of basic parts sizes of mutual displacement of the bottom balance weights, carriages and basic plates are counted up, which are shown in table 2.10.

Table 2.10
VALUES OF MUTUAL DISPLACEMENTS OF THE BOTTOM BALANCE
WEIGHTS AND BASIC PLATES OF MOBILE BASIC PARTS

			OF MOBILE BASIC I				
Span		Annual Control of the	The second secon	Displacement of rolling carriage axle			
##	100000000000000000000000000000000000000			in relation to axle of basic plate mm			
	##	"+" from span,"-"	in span	"+" from span,"-" is	n span		
		Left	Right	Left	Right		
1	1 .	+23	+21	+12	+14		
2	2	+3	-5	-3	+4		
3	3	· -6	-22	+1	-2		
4	4	+1	+5	-4	+10		
5	5	-15	-27	-8	-6		
6	6	-14	-13	-7	-3		
7	7	-19	-4	-11	-2		
8	8	+3	+5	-17	-10		
9	9	+21	+28	+12	+12		
10	10	-	+20	-	-3		
11	11	-	-	=:	-		
12	12	+15		5	-		
13	13	-8	-26	0	-2		
14	14	+25	27	10	+10		
15	15	-6	-6	-4	+1		
16	16	+7	, .	-8	-		
17	17	-33	-9	+3	-7		
18	18	-5	-8	+3	-7		
19	19	+23/+33	-25/-32	+10/+20	-10/-5		
20	20	+31	+21	-11	+6		

As shows the analysis of received results all mobile basic parts are in close to normal position, corresponding to temperature of air and metal of span structures. The maximum sizes of displacement of axes of the bottom balance weights and carriages with ralls in relation to axes of basic plates make 33 and 20 mm. accordingly. On support # 19, which has an inclination to the right side from axis of the bridge, the sizes of displacement were measured twice on each basic part from internal and outside side. It was found, that there was the heaviest skew of the and balance weights in relation to basic plates, making up to 10 mm.

On the support #2 in the right mobile basic part in the extreme span roll from its internal side an axial bolt of fastening of roll in the carriage is cut off. A condition of rolling surfaces are good, meeting the requirements of the "Instruction for Maintenance of Artificial Structures".

PART D-2

REPORT OF LOCAL EXPERTS (SECOND PART)

containing pages 1 to 14 (including headers of tables; the original tables are added on the following pages respective)

The data concerning convertible loads and bridge operating conditions are given in the same project specifications of the Bridge Design Bureau. It is noted that since 1952 the traffic on the bridge has greatly increased. In 1953 the load of 2 diesel locomotives and cars was introduced with pressure intensity of 7.2 t/m. Trains with series CO steam locomotives were used at that time.

In 1959, the bridge was inspected by the Moscow Bridge Testing Station (ЦΠ MΠC)¹. They have described in their report the strengthening of strut joining grid spacers with angles, strengthening of joining grid of upper booms with angles, strengthening of upper longitudinal connections between trusses, reconstruction of portals that had been carried out by that time. It was noted that repair and painting of all piers had been completed by the moment of inspection (1959). The repair included cementation of individual piers, repair of transverse pier connections and installation of inspection ladders between individual pier columns. The recommendation was given in the report to remove rail levelling instruments located on every other span.

In 1966 span structures of the bridge were inspected and partially tested by the experts of ΠЖБК ΜИИТ². It was shown in the bridge history (report of ΜИИТ), 1966) that the span structures had been strengthened 3 times by that time. Transverse beams were strengthened in 1937-1942 by adding two horizontal sheets, "voterens" were replaced with bridge beams. In 1956-58, the joining grid of upper booms and struts was strengthened, the connection of elements in 3'-4' to joint 3' was strengthened, intertruss connections bindings were strengthened, clearance was increased in accordance with 2-C, great amount of weak rivets in Б-П connections were replaced. In 1965 in view of installation of power line brackets, upper booms of main trusses were strengthened in end panels with two horizontal sheets.

Most 13

It was noted in the report that the "axes" in connections of transverse beams to main truss joints were damaged by an excavator jib in the result of train passing in 1966. The table of element classes obtained in 1953 by the Bridge Design Bureau of $\mbox{L}\Pi$ M Π C is presented in the same report.

¹ ЦП МПС - Central Permanent Way Department of the MPS (Ministry of Rail Transport)
 ² ЛЖБК МИИТ - specialised laboratory of the Moscow Rail Engineer Institute (МИИТ)

1

Table 1.4

Element	cm²	Class		Element	cm ²	Cross-	Notes	
		As to cross-section	As to connection			section class		
							Compression of joint Compression out of joint Tension Compression out of joint Tension Compression in joint Compression out of joint Tension Compression out of joint Tension Compression in joint Compression out of joint Tension Compression out of joint	

Longitudinal beam class according to the same data:

As to bending moment - 7.86

As to lateral force - 10.61 10.61

As to connection to Π on Б wall - 8,56

As to rivets in Π wall - 20.6

It is noted in (ΠЖБК МИИТ) report that the major damage of the main span structure trusses by 1966 was loosening of rivets in the connections of Đ5'-6 and Đ8-9' struts to the upper joints. During the inspection, 169 weak rivets were detected in the first rows of connections.

Most 17

...are situated, as a rule, along the boom of a transverse beam in the direction from rivet hole edges of the first row of "fish" connections to the booms of longitudinal beams over all or a part of a "fish" width.

In position No 21:

- in the connection of the right E11 to E11 to E12 the crack starts from the edge of the hole in first row and runs to the outer edge of the "fish" (Fig. 2.6); no crack is detected on the inner edge of the "fish". The break of the second rivet head of the "fish" connection to the upper boom E16 (Fig. 2.6);
- in the connection of the left Б11 to Π12 the crack crosses the whole "fish" along the first row of rivet holes; strong corrosion of the "fish" is also detected in the area of crack formation;
- in the connection of the left Б13-14 to П13 the crack similar to the above one (Fig. 2.6).

In position No 23: in the connection of the right EG1-2 to GG1 - the crack starts from the hole edge of the first row rivet, crosses the whole "fish" transversely and runs to its inner and outer edges. From the inner side, the crack runs out at the blade of boom angle G2 opposite the second from G2 rivet of "fish" connection and runs diagonally at the small angle with respect to the angle blade to the inner edge of the "fish"; the

экснаватора были повреждены "топорики" в прикреплении поперечных балок и узлам главных ферм.

в том же отчете приведена таблица классов элементов, полученных в 1903 году мостовым проектным бюро ДП мПС.

Таблига 1.4

лассы элементов, 1933 год

CRASS SECTION

Эл-т	CM2	_ Iinacc	CLASS	Эл-т		ісласс по	Примеч.
ELEMENT	cm²	.10 Cey.	No ubako			сечению	
32	೭ ಒರ	ö,92	7,8	P0-:	268	10,5	Сж.узла 1)
ಶನ'-ತ	223	-"-	-"-	P0-I'	26]	9,75	Сж.вне узла 2)
ಚ' -4′	3 <u>.</u> c	6,6		PI -2	157,6	7,03	Растяж. 3)
34 -5	3 .t	6, 6	7,6	P2-J	172,3	10,.7	Сж. в узле 1)
bō −7′	პ ნა	b,44	7,33	P2-3	I4'7	6,36	Сж. вне узлаг)
HU-2	I7]	12,75		P3'-4	III,3	٤,35	Растяж. 3)
H2-3	242	7,13		P4-5	116,1	11,50	Сж.в узле 1)
H3-4	255	7,7	J	P4-5	86	6,Iō	Сж. вне узла 2)
H4-5	312	7,75		P5'-6	72,8	6,03	Растяж. 3)
H6-7	342	7,79		P6 -7	95,9	12,65	Сж.в узле 1)
C	51,35	8,25		P6-7	66,5	e , 90	Сж.вне узлаг)

По тем же данным класс продольных балок:

По прикреплению к П в стенке Б - 6,56

По заклепкам в стенке II - 20,6

В отчете ЛЖЫ: МЛИТа отмечено, что эсповным повреждением главных ферм пролетных строений к 1966 году являлось начавшееся массовое расстройство заклепок в прикреплениях раскосов Р5 — и Рс-9 к верхним узлам. При обследовании было обнаружено 169 слабых заклепок в первых рядах прикреплений. Отмечалось начало работы

¹⁾ COMPRESSION OF JOINT

По изгибающему моменту - 7,86

²⁾ COMPRESSION OUT OF JOINT

По поперечной силе - 10,61

³⁾ TENSION

crack doubles on the outer side near the blade of the boom angle: one runs along the blade, and the other one - reaches the edge of the "fish" near Π boom.

In position No 25: in the connection of the right B1-2 to B1-2

Most 19

- 4. Loosening, head break, lack of rivets joining the "fishes" with the upper booms of longitudinal beams:
- on position No 21 in the connection of the right B11-12 to B12 break of head (from below) of the second from B1 rivet of the connection to the outer side B1 (Fig. 2.6.); the same damage is detected on position No 25 in the connection of the left B0-1 to B1;
- on position No 24 in the connection of the right and left D13-14 to D14 the rivets nearest to D1 are absent from the inner and outer sides (4 pieces); the same is on position No 25 in the connection of both D0-1 to D0;
- on position No 25 in the connection of the left B11-12 to B1
- 5. In the connections of the longitudinal beams to the transverse ones, many rivets both on Π and B walls are replaced with high-strength bolts, some rivets are weakened or have torn off heads.

Data concerning damaged or replaced rivets are shown hereinafter; the numbering of rivets starts from the lower boom Π , including the rivets in the "table".

The following damages of rivets on the wall Π are detected:

- on position No 4 in the connection of the right $\mathbb B$ to $\mathbb H$ 6 on the inside the head of the fifth rivet is torn off (it was replaced immediately with the high-strength bolt by the bridge repairing team);
- on position No 19 in the connection of the right B to B11 on the outer side the signs of the rivets No 2, 3 and 4 loosening;
- on position No 22 in the connection of the right Б to Π11 on the outer side the signs of the rivet No 3 loosening;

- on position No 23 in the connections of the left 5 on the outer side to:
- $\Pi 2$ the fifth rivet has the signs of loosening (the neighbouring rivet is replaced with high-strength bolts);
- Π 12 the signs of the 4th, 5th and 6th rivets loosening;
- Π 12 the signs of the 2nd and 3rd rivets loosening;
- on position No 24 in the connection of the right B to B on the outer side the third rivet has the signs of loosening (the neighbouring rivets from 4th to 7th are replaced with high-strength bolts).

The list of the rivets on the Π wall replaced with high-strength bolts is given in Table 2.6.

The following loosenings and defects of the rivets on δ wall (considering the "table" wall) are detected:

- on position No 19 on the wall of the left $\overline{b1}$ -2 near $\overline{\Pi2}$ the first rivet is missed (the hole is not completely drilled);
- on position No 23 on the wall of the right EGIDMETATE DESTRUCTION DESTRUCT
- on position No 23 on the wall of the right $\overline{67}$ -8 near $\overline{18}$ the signs of the 4th, 5th and 6th rivets loosening.

The list of the rivets on the 5 wall replaced with high-strength bolts is represented in Table 2.7.

- 6. Loosening and defects of the upper boom rivets of longitudinal beams:
- on position No 9 in the left $\overline{64-5}$ near $\overline{15}$ signs of weakening (corrosion sags from the boom angle) of three rivets nearest to $\overline{1}$:
- on position No 11 in the right 513-14 in the middle of the panel one loosened rivet (fixing both boom and stiffener);

Most 24

...(individually for left and right sides) and nature of damages are shown in Table 2.9.

As one can see from the Table, 34.8% of total amount of angles of rolling track suspensions are damaged and their number is rapidly increasing.

12. In the connections of the lower bearing "table" to B boom and its connections to the lower "fish" of some span structures, the rivets are replaced with high-strength bolts (Fig. 2.14). The greatest number of such high-strength bolts are located on position No 14: 207 pcs. in the connection to the lower boom B; 224 pcs. in the connection of the upper angles to the "table" wall. According to the information obtained from track inspection, strength bolts placing was carried out while strengthening the connection of B to B ("table") due to low quality of previous riveting.

2.2.3. The results of ground based span structures inspection.

The ground based span structures No 1 and 26 are in satisfactory condition; no essential damage effecting capacity is detected. The corrosion of the upper horizontal sheets of the main beams is of a surface nature, the resulting sheet damage is no more that 10% of their cross-section.

Damage of the upper plates is detected while inspecting supporting elements of span structures. Near the left supporting element of the abutment No 0, the plate is cleaved in two parts by inclined crack (Fig. 2.15); the similar damage is near the supporting element of the abutment No 26, and the elements of the beam lower boom are deflected in the point of resting upon the plate.

The last bridge beam of the left bank span structure (near the cabinet wall) is resting on the short beams made of angle $160 \times 160 \times 20$ which are welded to the butt ends of the main beams with vertical joints. When train is running, these angles are strongly deformed, and this point of resting of the last bridge beam is unreliable.

Most 25

Table 2.9. Damages of angles of rolling track suspensions for inspection trolley.

Span structure No	Side	Number of and their co	Nature damage	of	
		Inclined	vertical		
		left		cracks	
		right			
				cracks	
				complete fracture	
				cracks	
				cracks	
				complete fracture	

	cracks
	one connection rivet is loosened
	complete fracture
	cracks
	complete fracture
•	cracks
	one connection rivet is loosened
	cracks
	complete fracture
	cracks
	complete fracture
In all for the whole bridge	cracks
	complete fracture
	loosened connection rivets

Most 28

2.3. The results of inspection of supporting elements of channel span structures.

The inspection of stationary supporting elements has not revealed any defect or damage.

While inspecting movable supporting elements, relative position of the lower balance beam, carriage with rollers, and lower supporting plate was determined. Measurements were carried out in sunny, windy weather, at the temperature about +20°C. Besides that, attention was paid to the integrity of axial bolts connecting rollers and carriage and condition of rolling surface. Measurements and inspection were carried out for the most of supporting elements; the rest were not inspected in details because of inaccessibility of the rollers due to design of their cases. The cases of all supporting elements of span structures No 21-25 are all-riveted, stationary, lids of some other cannot be opened. After the results of the measurements of supporting elements positions, the values of relative displacements of lower balance beams, carriages and supporting plates are calculated, the results are presented in Table 2.10.

According to the analysis of obtained results, all movable supporting elements are in position close to the normal one corresponding to the temperature of air and span

Таблица 2.9 Повреждения уголков подвеса путей катания смотровой тележки

Пролетное строение	Сторона	Количесть денных уч их прикре	zonkob u	Характер повреждений	
NN		НОКЛОННЫХ	вертикальн.		
1	2	5	4	5	
,	repad	11	1	mnouville	
7	правая	6	1	трещины	
2	левая	10			
2	правая	8			
3	левая	16	_		
.,	правая	18	_		
4	левая	16	_		
4	правар	10	1		
5	левая	11	_		
3	правая	10	_		
6	левая	11	<u> </u>		
O	правая	7	_		
~	левая	11			
7	правая	8	_		
8	левая	15	_		
0	правая	14			
g	левая	23	_		
9	правар	18		,	
10	левая	19			
70	правая	23	_		
11	левая	23	1		
	провая	21	-		
	левая	16	1	трещины	
12	левая	_	1	полный разрый	
	прабая	14	_	трещины	
13	левая	21		трещины	
	правая	19	2	Mipeaganor	
	левая	27	_		
14	правая	27	-		
	правая	0	2	полный разрыв	

Продолжение таблицы 2.9

	4			
1	2	3	4	5
15	левая	29	 -	— трещины
100.10	правая	26	2	<u> </u>
	левая	25	. 2	
16	правая	24		-0.0
,0	правая		1	OBHO CAOO. BAKARAN APHKPENARHUA
	левая		1	полный разрыв
	левая		1	 #
17	лерая	26		трещины
	правая	17	1	nipe symmetry
	rebas	28	1	
10	правая	27	1	
18	левар	T-	1	Daniel Tranklik
	прабая		2	— полный разрыв
10	левая	21	2	man
19	правая	26	_	трешины
40	левая	32	1	
20	правая	28		
	левая	32	_	
21	правая	24	1	— "—
	правая	_	1	одна слаб. заклепка прикрепления
	левар	. 26		
20	правая	24	1	— трещины
22	левая	-	1	
	правая	1	1	— полный разрыв
0.7	левая	28	1	
2 3	правая	23		— трешины
21	1ebag	22		
24	правая	27	-	
	Nebap	33		
25	правая	27	†	
	правар		1	полный разрыв
Harris		1011	20	трещины
Umozo	по	1	11	полный разрыв
Всему	Mocmy	_	2	слабые заклеп- ки прикреплен.

structure metal. The maximum displacement values for axes of lower balance beams and carriages with rollers relative to supporting plates axes are 33 and 20 mm respectively. Displacement values for the pier No 19 inclined to the right with respect to the bridge axis were measures twice for each supporting element - on the inner and outer side.

Most 29

Table 2.10.

Values of relative displacements of lower balance beams and supporting plates of movable supporting elements.

Span No	On the pier No	displacer supportin	beam axis nent relative to g plate axis Δ ₁ , mm; the span the span	displacen	the span
		left	right	left	right

Most 30

It is determined that there is a small misalignment of rollers and balance beams relative to supporting plates - up to 10 mm.

Axis bolt fixing roller to the carriage of the last roller in the span on the pier No 2 in the right movable supporting element is cut down on the inner side.

The condition of rolling surface is good and meets the requirements of the "Artificial construction maintenance regulations".

Most 31

2.4. The results of piers inspection.

The inspection of bridge piers was carried out by the team of experts of the Chair of Bridges of the M/I/IT in April 1990 and October 1991. The inspection of underwater part was carried out by the specialists of (ЦП МПС) divers' station in November 1990 and March 1991.

Layouts of bridge passage as on April 1990 and March 1991 are shown in Fig. 2.16 and 2.17. The results of depth measurements near piers obtained by channel station during the period of fulfilment of the present work are shown in Table

Stone caps. Each round stone cap is 270 cm in diameter and consists of a plane masonry plate and two draining plates inclined in respect to the truss axis. In the most of the caps (besides the cases noted below), joints between individual blocks are dense by appearance, there are no cracks or gaps in joints, specific "jingling" sound is heard when beating caps with hammer.

The lower supporting plates of supporting elements are mounted in the recesses of stone caps without anchor bolts. The places of contact of supporting plates and granite on all the piers are dense by appearance without any cracks, tear-outs, destructions. On some caps, the places of contact of supporting parts with stone are cemented.

Таблица 2.10 величины взаимных смещений нижних балансиров и опорных плит подвижных опорных частей

Пролет ММ	Ha anope NN	Смещение сира отно оси апарна Дз, мм на пролета	OLÍ NALITЫ	с катками тельна ос	OTHOCU- U ONOPHOU 2, MM
1	1 .	+ 23	+ 21	+ 12	+ 14
2	2	+ 3	- 5	3	+ 4
3	3	-6	-22	+1	- 2
4	4	+ 1	+ 5	-4	+ 10
5	5	-15	-27	-8	- 6
6	6	-14	- 13	-7	-3
7	7	-19	-4	-11	-2
8	8	+ 3	+5	-17	-10
9	9	+21	+ 28	+12	+12
10	10	N 	+ 20		-3
11	11				
12	12	+ 15		+5	
13	13	- 8	-26	0	-2
14	14	+ 25	+ 27	+10	+ 10
15	15	-6	-6	-4	+1
16	16	+ 7	_	-8	
17	17	- 33	- 9	+3	-7
18	18	-5	-8	0	+3
19	19	+23/+33	⁻²⁵ /-32	+10/+20	-10/-5
20	20	+31	+21	-11	+6

The major attention was paid to the condition of stone caps and contact of supporting elements with them on the pier No 19 that was inclined in 1919 due to a disastrous erosion. Supporting elements on that pier are displaced by 35 cm relative to the centres of caps transverse to the axis of a passage in the direction of river flow. Here, the bearing pressure is transferred partially to the blocks of a drainage besides heavy duty blocks of masonry plate. No serious disturbance in resting of supporting elements plates upon pier No 19 caps was detected.

Most 32

Layout of bridge passage according to the data of channel station (April 1990).

Most 33

Layout of bridge passage according to the data of channel station (March 1991).

Table 2.11

The results of depth measurements near piers (m)

Year

Pier Month

March

April

may

June

Luk

July

August

September

October

November

December

January

February

March

April

may

June

July

August

September

October

Most 45

The inspection of the lateral surface of foundation coating of the same pier using a rigid probing rod has shown that coating metal at the depth of one meter has no considerable corrosion damage. The investigated metal surfaces, always situated below water or flooded soil level, are less corroded comparing with the surfaces situated in the zone of variable water level.

In April 1991 while inspecting piers, the recess was made in the forth (from the top) layer of the pier No 9 top column. The recess 42x42 cm in size was on the transverse axis of the pier, its lower edge was on the level of the midheight of the forth layer of the above-foundation part. The opening was made after water pumping from the pit near the pier, before that the level of water was on the level of the middle of the 4th pier (Fig. 2.27).

Coating surface in the opening zone on the level of variable water level is strongly corroded. Rivet heads of vertical cover-plates near the recess are corroded by approximately 3/4 (Fig. 2.28). The part of the coating, that was cut out, appeared to be dry from within and covered remainders of paint. The thickness of the cut part strongly corroded from the outer side, measured over the whole perimeter, was 10.5 - 11 mm (design thickness is 1/2" or 12.7 mm). Dry, high quality rubble masonry was opened which was hardly effected when using electrical pick-hammer. At the depth of 44.5 cm from the coating surface, vertical angle was opened with the size of the wing 75 mm (Fig. 2.29). The opening of the angle has revealed that the joining

9

Ланине	промеров	глубин	v	0:100	(M))
L. done . see a war.	To bound bus	*	. 1	a b	/	

Таблица 2.44

LOA	Onopa MEC	уст	1	2	3	4	3	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	YET
_	Mapt	0,9	0.5	0.5	0.9	0.5												5.0	8.0	6.5	5.6	5.3	10.4
32	апрель	1,3	0.9	0.9	1.5	0.9												5.8	6.6	7.0	5.9	4.9	5.2
	май	2.3	1.7	1.7	2.3	1.7											9.3	87	10.5	10.0	11.8	9.7	4.6
0	июнь	2.0	1.7	1.7	23	1.7										9.5	9.1	8.4	9.0	8.7	6.7	10.6	5.1
	ИЮЛЬ	2.3	1.7	1.7	2.3	1.7						4.2	10.7	9.1			11.5	9.8	9.2	68	6.9	13.0	5.0
g	abeyet	2.0	1.5	1.5	1.9	1.5								4.9	8.8	7.9	7.8	8.5	6.4	6.7	6.6	12.1	3.5
	Сент	1.5	0.9	0.9	1.6	1.0						6.3	7.5	8.5	7.6	3.9	2.1	5.8	58	6.0	8.5	7.6	1.3
9	OKT	0.9	0.6	0.8	1.4	0.8						6.3	7.5	8.2	7.6	4.0	0.5	3.6	3.6	4.9	8.4	5.3	1,1
	ноябрь	0.9	0.3	0.3	0.9	0.3						6.5	6.5	5.3	4.0	4.3	2.6	2.9	2.9	35	4.1	7.7	1.4
+	Пекаврь	1.0	0.2	0.2	08	0.3						6.9	7.8	6.2	4.0	2.4	2.6	35	3.0	3.0	3.4	7.7	1.3
	январь	07	0.2	0.1	0.7	0.2						7.0	7.7	5.8	2.2	0.2	1.3	1.9	1.9	27	5.0	5.8	0.6
	февраль	0.8	0.2	0.2	0.8	0.1						4.7	5.8	5.2	2.5	1.7	2.4	1.5	2.3	4.0	5.7	5.7	1.0
1	м арт	0.6	0.6	0.1	0.1	0.7						7.0	7.4	5.7	2.3	0.7	1.5	19	1.9	2.7	5.0	5.9	05
	апрель	2.2	2.2	1.6	1.2	1.9						2.6	5.2	6.7	7.9	8.5	7.5	6.0	5.2	7.3	6.8	8.9	2.3
6	май	2.5	1.9	1.9	2.5	1.9						9.3	11.6	8.3	7.5	6.2	5.0	5.8	65	6.3	8.8	9.6	1.6
	июнь	2.4	2.4	1.8	2.4	18			2.0	2.3	11.1	9.0	8.9	8.0	8.1	5.2	5.0	5.5	5.6	5.8	9.0	13.8	4.9
9	июль	2.1	1.6	2.2	2.2	1.6			9.5	11.0	8.5	1.5	5.6	4.9	4.5	3.7	3.2	4.2.	4.2	5.2	9.0	13.6	4.6
	abryct	2.1	1.5	1.5	2.1	1.5			9.1	7.9	68	5.4	4.2	4.0	4.2					6.5	8.2	12.0	4.1
+	сент	1.7	1.2	1.2	17	1.2		0.7	8.6	7.8	6.3									3.0	8.5	9.1	3.9
	ОКТЯБРЬ	1.2	0.6	12	0.6			6.9	6.5	5.0	3.4				1				5.2	6.1	8.4	80	2.4

structure of the above-foundation and foundation parts of the pier, that was built first during construction, corresponds to the design (Fig. 1.17).

Most 49

Inspection of underwater part of the piers was carried out by the specialists of the Repair and Inspection Pilot Station of $\[mu]\Pi$ M $\[mu]\Pi$ C. The results of underwater inspection of pier coating and inspection of foundation and above-foundation parts joint at low water level are shown in their report (annex No 4). The results of pier No 24 coating opening carried out in 1984, as well as the ideas concerning the design of that pier coating joint, that differs from the initial design according to the results of the opening, are also shown.

The conclusion was made after the results of pier metal surfaces inspection carried out by divers that coating metal of underwater part of the piers is in good condition; through corrosion of pier coating and other considerable damages in the underwater part were not detected.

The inspection of the bridge abutments has shown that there are cracks between individual stones of the covering masonry. On the right-bank (Farab) abutment, the block of a cordon stone on the front face of the revetment wall lower side has separated from the masonry and is displaced towards the span. This damage is partially eliminated by cementing joints. There are cracks in masonry stones of the same pier revetment wall.

Most 51

2.6. Metal and concrete quality assessment

2.6.1. Span structures metal quality assessment

The most important design parameters in the method of limiting states are design resistances. Both welding iron and ingot steel were in use when the bridge was built, the speed-torque characteristics of which differ considerably. There are no reliable data concerning the metal of span structures and its quality.

Considering the above, as well as taking into account the importance of the construction, the main design resistance of the metal of span structures was obtained basing on the results of detailed material investigations in laboratory conditions. 30 metal samples were taken from unstrained zones of working elements (booms, struts, etc.) of span structures No 2, 4, 5, 10, 24. Metal samples 5x15 cm in size were cut out using cutting torch in accordance with the "Table of sample cutting out" shown in Annex No 1.

The laboratory investigations included:

- chemical analysis;
- structural analysis
- speed-torque characteristics determination.

Basing on the chemical analysis of span structures metal samples, the following percentage composition of main chemical elements is determined (Annex 1):

Carbon - C - 0.051-0.13%

Manganese - Mn - 0.33-0.54%

Silicon - Si - 0-0.05%

Phosphorus - P - 0.058-0.12%

Sulphur - S - 0.051-0.062%.

It should be noted that the results of the tests conform with the results obtained previously while investigating ingot steel produced before 1905 and used in other bridges, but there is a great variation of characteristics of the bridge metal.

The main characteristic defining the first limiting state as to metal span structures strength is yield limit.

The main design resistance of metal, when estimating bridge capacity, may be considered R_0 =R', where R' - the smallest value of yield limit, the probability of which is no more than 0,0014. In the case of normal distribution σ_t

R'=
$$m\sigma_t$$
 - $3\sigma_s$ = 271.5 - 3.32.47 = 174 MPa

Basing on this, the main design resistance of span structure metal in capacity calculations is taken as R=174 MPa, that is lower than value recommended by "Instructions on Capacity Calculation of Railway Bridge Metal Span Structures", 1987, for that type of metal (ingot steel produced before 1906), according to which $R_0=185$ MPa.

Most 59

2.6.2. Assessment of Intermediate Piers' Rubble and Brick Masonry Quality.

Recesses were made in piers No 9 and 10 in April 1990 and October 1991 in order to assess the quality of rubble and brick masonry of inner filling of piers' covering. The results of the inspection are shown in Section 2.4. of the present Report.

The strength of rubble and brick masonry was defined by non-destructive method using Schmidt sclerometer. Sclerometer readings, as well as the values of cubic strength of rubble and brick masonry obtained using calibration curves, are shown in Tables 2.17, 2.18. Average value (expected value) of cubic strength is 26.8 MPa for rubble masonry and 22.8 MPa for brick masonry. These values correspond to calculated resistance values R_b = 10.0 MPa for rubble masonry and R_b = 8.5 MPa for brick masonry [3].

When specifying design value of concrete strength to calculate joints of foundation and above-foundation parts of intermediate piers, it was taken into account that pier columns masonry operates within metal covering. That effects positively filling material and increases its supporting power. Besides that, joint damages were detected in many piers being the result of concrete quality deterioration in the places of above-foundation coatings resting on ring platforms through levelling pads at the depth no more than the size of ring platform, the inner diameter of which being d = 208 cm.

Considering the above, the design resistance of the material was specified as $R_b = 0.9.85 = 76.5 \text{ kg/cm}^2$, where $m_{tc} = 0.9$ is the factor of operation condition of the pier. m_{tc} factor was specified in accordance with guide draft on determination of pier load-carrying capacity of railway bridges in operation.

Strength determination of rubble masonry of pier No 10 3rd layer using Schmidt sclerometer.

Table 2.17

Reading in the moment of impact	
Cubic strength	

Average value (expected value) is 26.8 MPa

Strength Determination of concrete masonry of pier No 10 4th layer using Schmidt sclerometer.

Table 2.18

Reading in the moment of impact	
Cubic strength	

Average value (expected value) is 22.8 MPa.

Most 61

- 3. Assessment of Bridge Elements Load-carrying Capacity and Reliability
- 3.1. Load-carrying Capacity of Span Structures.

Most 64

Table 3.1. Comparison of elements classes of span structures main trusses with load classes.

Eleme nt	Element cla	asses	Load classes of	Load Classes of		
	as to strength, stability	as to strength, stability, considering wind brake load	as to durabili ty	II category	III category	

MOST60.PCX

Определение прочности склерометром Шмидта бутовой кладки 3 — го яруса опоры № IO

Таблица 2.17

Отсчет при ударе	29	34	32	34	32	30	24
Кубиковая прочность	230	310	280	310	280	240	150
Отсчет при удар"	33	33	32	31	30	20	38
Кубиковая прочность	290	290	275	260	240	230	380

Среднее значение (математическое ожидание) 26,8 МПа

Определение прочности склерометром Шмидта Бетонной кладки 4 -го яруса опоры № 10 Таблица 2.18

Отсчет при ударе	24	25	24	17	26	22	29
Кубиковая прочность	I 55	170	155	-	180	130	230
Отсчет при ударе	28	24	36	24	29	25	29
приннесть приннесть	žI0	I 55	340	155	230	170	230
Отсчет при ударе	27	38	38	34	40	17	28
Кубиковая прочность	200	380	380	310	420	-	210
Отсчет при ударе	30	35	3I	29	26	-	-
Кубиковая прочность	240	325	260	225	180	-	-

Среднее значение (математическое ожидание) 22,8 МПа

MOST64.PCX

Таблица 3.1 Сравнение классов элементов главных ферм пролетных строений с классами нагрузки

1					Слассы элементо	NP.		
! ! !Элс !	емент	λ,	ل		по прочности, устойчивости,	по выносли- вости	Классы Нагрузки <u>Л</u> Категории	Классы нагрузки! <u>Л</u> категории!
! ! H	0-2	66,14	0,071	I4,I2	10,88	10,91	7,17	6,53
i		!	! !0,2I4	!	! ! 6,88	! ! 6,55	! ! 7,28	6,58
! ! H	3-4	66,I4	0,214	8,58	7,34	7,09	7,28	6,58
H	4-5	66,14	0,357	8,52	7,51	7,06	7,38	6,6I
H	5-6	66,14	0,357	9,01	7,95	7,49	7,38	6,61
į H	6-7	66,14	0,500	8,79	7,82	7,31	7,48	6,65
i B	I - 2'	66,14	0,143	10,63	11,03	-	7,23	6,55
i B	2-3	66,14	0,143	8,18	8,25	-	7,23	6,55
i B	3-5'	66,14	0,286	8,39	8,44	-	7,33	6,59
! B	5-7	66,14	0,429	8,58	8,65	-	7,41	6,63
! F	0-I'	66, 14	0,071	8,90	7,18	-	7,17	6,53
! P	I - 2	60,83	0,068	7,39	a -	6,28	7,04	6,46
į P	2-3	55,57	0,065	8,53	-	11,79	6,86	6,37
! P	3-4	50,36	0,062	7,77	-	5,89	6,78	6,26
1	1	1	0,059		-	12,84	6,70	6,30
I P	5-6	40,70	0,071	7,21	-	2,21	6,75	6,50
! P	6-7'	35,62	0,071	12,67	-	4,26	6,98	6,62
!	C	9,45	0,500	8,07	-	3,56	6,19	5,97

General information about magnetic records made using strain resistors placed on the elements of span structure No 11.

Table 3.6.

- 1. Strain resistor No
- 2. Channel No
- 3. Strain resistor position
- 4. Figure No
- 5. Number of records
- 6. Full load
- Mixed
- 8. Empty
- 9. Passengers'
- 10.Passengers', local
- 11.Individual locomotive
- 12.In all
- 13. Including braking on the bridge

Most 87

3.2.3. Analysis of Results of Span Structure Elements Fatigue Life Assessment

Most 88

Table 3.7.

Measure of damages accumulation in the element Π 13-2 during the whole period of bridge operation.

Most 100

3.3. Load-carrying Capacity of Piers.

Most 117

ANNEX No 1

Results of Laboratory Investigations of Metal Speed-torque Characteristics.

Approved by Head of Track Service of Middle Asia Railway Общие сведения о магнитограммах, записанных с тензорезисторов, установленных на элементах пролетного строения № II

Таблица 3.6

		₩ ка-	Месторасположение		F	оличе	ство з	аписанн	ых реал	изаций		
торо		- налов	тензорезисторов	сунка	HOI	'-шан- -ные	Порож- ние	Пасса- жирс- кие	жирск.	Отдель- ный ло- комотив	Bcero	В том ч. с тормо- жением на мосту
I		2.	3	4	5	6	7	8	9	10	II	12
I		I CI	-1 внешняя ветвь з	I'33	3	36	3	9	II	9	71	_
2		2 PI	-2 внешняя ветвь у	I'3.3	4	41	3	II	12	9	. 80	- 7
3		P3'-4	внешняя ветвь у 3	3.2	3	36	3	9	II	9	71	-
4	4	C5-5 '	внешняя ветвь у 5	1	3	36	3	9	II	9	71	_
5	5	P5 '-6	внешняя ветвь у 5	3.1	3	37	3	9	12	9	73	-
6	6	H6-7 B	нутр.стенка у 7	3.4	3	36	3	9	II	9	71	-
7	I	P5'-6	внутр.ветвь уб	3.5	-	I	-	_	I.	_	2	-
8	6	P5'-6	наружн.ветвь уб	3.9	-	I	-	-	I	-	2	
9	2	"Рыбка	" П7, В6-7-2	3.6	I	8	I	3	2	-	15	2
IO	6	Стенка	В6-7-2 у П7	3.6	I	8	I	3	2	-	15	2
II	6	Вертик катани	альная подвеска пу я смотровой тележк	тей 3. Ұ и	I	13	I	6	2	I	24	3 — 3
12	I.	Наклон тания	ная подвеска путей смотровой тележки	ка-37	I	13	I	6	2	I	24	2

I	2	3	4	5	6	7.	8	9	IO	11	12
13	4	Горизонт.полка нижнего поясного уголка П6 со стороны 5-6	3.7	I	14	I	6	3	I	26	2
14	5	Горизонт.полка нижнего поясного уголка ПІ со стороны 0-І	3.8	I	II	I	6	2	I,	22	2
15	3	Горизонет.полка нижнего поясного уголка ПІ со стороны I-2	3.8	I	II	I	6	2	I	22 .	2

ИТОГО: 589 реализаций

MOST88.PCX

Tagenta 3.7
EZPA BAROBERUNG BOBPERAZENN B SERBERTE P1'-2
SA BECK BEPNOG SRCBEVATAUM BOCTA

THE EACSON	\$1255 \$20557- \$72455.		Bate. Bates	Ros-so soestos s ésote		320132881 3201328881	SORPEZACE	
	PP.		28252		.,,,		561 0	
			,	THE	100000	N	100000	×
1	2	3	4	5	6	7	8	9
-	1930-47	2.76	79-81	276-00	0-005066	0.013982	0.001239	0.003420
	1948-64	2.76	82-58				0.001701	
	1965-80	1.7					0-001748	
	1900-91	No. of the last of the last	86-84				0-002330	
						0-066941		0-018123
sonnerp.	1930-47	2.76	71.32				0.000000	
-	1948-64	2.76	73-81				0.000000	
	1965-00	2.76	74.58	14.70	0.006084	0-000894	0-000000	0.000000
	1980-91	2.76	77-61	10-10	0.007720	0-000780	0.000000	0.000000
						0-003029		0.000000
10702888	1930-47	2.76			0-003874	0-001015	0-000000	0.000000
	1948-64	2.76	74.30	24.70	0.004755	0-001174	0-000000	0.000000
	1965-80	2.76	75-08	29-10	0-005062	0-001473	0-000000	0.000000
	1900-91	2.76	78-13	20.00	0-006423	0-001285	0-000000	0.000000
						0-004947		0.000000
saccat.	1930-47						0.000000	
	1948-64			79.40	0-002460	0.001953	0-000000	0.000000
	1965-80	2.76	62.56	97.30	0.002460	0.002393	0-000000	0.000000
	1900-91	2.76	69.52	66.90	0-003886	0-002600	0-000000	0.000000
						0-000055		0.000000
местине	1930-47				12 12 12 12 12 12 12 12 12 12 12 12 12 1		0.000000	
Чардвоу	1948-64			100.010.0000	7.00		0.000000	
	1945-80	To the same	43-48	100 100 100 100 100			0-000000	
Y	1900-91	2.76	48-31	66.95	0.000623	0-000417	0-000000	0.000000
, j						0-000417		0.000000
MEGTERE	1930-47	100000000000000000000000000000000000000					0-000000	
4apas	1948-64		The second second	 II. A. A. S. S. S. S. S. S. S. 	PAS PRODUCTOR STATE	A CONTRACTOR OF THE PARTY AND ADDRESS.	0-000000	
	1965-80	200000000000000000000000000000000000000	1 - ST. 12 -	100000000000000000000000000000000000000		CARCO ENGENERGE CONTROL	0-000000	
))	1900-91	2.76	41.05	66.95	0-000000	0-000000	0-000000	0-000000
						0-000000		0.000000
						0-083389		0-018123

MTOTO : V = 0-101512

Tabler 3.8

HEPA HAROMETHER ROBPETGERING B STREETE P31-4

SA BECK REPROG SECHEVATARIM BOCTA

THE STARE				E08-80	Repa m	BE+186881	B0BP68Ke	70 AN
E068E9	826887- 8788884		88891-	s frose			BATOROS	
	PF.		ANESS H		100 100		241 41145	
				0000000	100000		100000	H
1	2	3	4	5	6	7	8	9
CHE 848 -	1930-47		1,41,41,141,141,141		0-003375			
1	1948-64				0.004491			
	1%5-80				0-004491			
	1980-91	2.88	76-70	210.80	0.005547		0-001675	
						0-046480		0-01334
SORHOTP.	1930-47				0-002171			
	1948-64				0.002791			
	1965-80				0-002791			
	1980-91	2.88	62-40	10.10	0.003266		0-000000	
						0-001406		0.00000
10705886	Control of the Contro		0.0000000000000000000000000000000000000		0.002983			
	1948-64		100000000000000000000000000000000000000	2707 (0)2540	0-004107			
	1965-80	100	102.50	2000	0.004107		and let a let a called	
	1980-91	2.88	71-89	20.00	0.005246			
						0-004040		0-00000
saccas.	1930-47				0.002190			
Map Zeo7	1948-64		77.50		0.004362			
	1%5-80			0.000	0.004362	The second second		
	1980-91	2.88	75-29	22-45	0.007472			
						0-007274		0.00000
-36008	1930-47				0-002257			
tapas	1948-64				0-004497			
	1965-80		1 Chr. 2 Chr. A 5-3177	VANCOUR PROPERTY	0-004497			
	1980-91	2.88	79-11	33.45	0.007322			
						0.007371		0.00000
	1930-47			84-10	0.000000	0-000000	0.000000	0.00000
449 8307					0.000000			
	1%5-80				0.000000			
	1980-91	2-88	45-73	66.95	0-000227			
						0.000152		0-00000
MESTERS	1930-47			100.000	0.000000	ACC 100 (0.0		
tapas	1948-64				0.000334			
	1965-00				0-000334			
	1980-91	2.88	44-25	66-95	0.000518	0-000347	0.000000	0-00000
El .	portain an					The state of the s	•	
il A						0-000938		0.00000

MTOFO : V=0.081006

табанда 3.9 вера накониемия новреждений в экспекте Р5'-6 за весь нермод экспектации воста

THE	97422 020227-		Bare- Res-se manys- recoges	Бера вакопления говрекцений от				
20000000	878886 CP-	. 800	\$6822 26822	s 6aoce	1013702		1010151	
			,,,,,,,,		100000		190000	×
1	2	2	4	5	6	7	8	9
ens 211 -	1930-47	3-10	73.23		0-003280			
42PES07	1948-64	3-10	77-61	130.30	0.004560	0-045942	0-001479	0-001927
	1965-80	3-50	78.02	153-30	0-010279	0-015758	0.004565	0.006998
	1980-91	3.97	81-10	105-40	0.026104	0-027513	0.014272	0-015042
						0-053739		0-025308
cwenzs.	1930-47	3-10	64.38		0-003222			
-tapa6	1949-64		0.000		0-004485			
	1%5-80	3.50	68-59		0-010020			
	1900-91	3-97	71.30	105-40	0-025612		0.010250	0-010804
						0-052646		0-016994
- 4108808					0-001175			
-	1949-64				0-001952			
	1965-80				0-004486			
	1980-91	3.97	51.50	10-10	0-014101			0-000000
						0-002483		0-000000
IOPOZUM e					0-002797			
	1948-64		The second second second	100000000000000000000000000000000000000	0-003877		1800 1800 1800 1800 1800	
	1%5-80			100000000000000000000000000000000000000	0-006571	1 (2 (- d. 6) () () () () () () () () ()		
	1980-91	3-97	71-00	20.00	0-022061			0-000000
						0-008597		0-000000
saccaz.	1930-47				0.000000			
Map & Eoy	1948-64				0-000000			
	1965-80				0-002849			
	1980-91	3-97	79.21	100-40	0-020065			
						0-024306		0-000707
190091-	1930-47				0.000000			
tapas	1948-64			 19000000000000000000000000000000000000	0.000000			
	1965-00				0-001753			
	1990-91	3.97	64-12	100-40	0-012633			
						0-015243		0-00000
						0-157013		0-04300

MTOTO : V=0-200022

Ŧ.

Tabanga 3.10
EEPA BAROREZEMS BOBPETAZEMA B SEZERETE CI-1¹
SA BECK BEPMOA SECREVATARMA BOCTA

Tes	372EE		Bate.	Res-20	Bepa si	FEORIGANI	повревде	18å ot
106375	020287- 2724881			R PROFE	800	1202	Bares	102
	17.		facts	THE.	100000	N	100000	N
1	2	2	4	5	6	7	8	9
cuezas.	1930-47	2-83	68-33	138-00	0.005692	0-007856	0-006612	0-00912
Sappeor	1948-64		P6/2004-11/03/			0-012163		
Alex an	1965-80	3.49	54-11	153.30	0.006709	0-010284	0-008649	0.01325
	1980-91	3.49	58-50	105-40	0-010107	0-010653 0-040956	0-016332	0-01721 0-05700
onesas.	1930-47	2-83	64-65	138-00	0-003463	0-004778	0.005762	0-00795
+apa6	1948-64			130-30	0-005199	0-006775	0.010663	0.01389
	1965-80	DA -407	1.395/17/45	C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0-006423		A STATE OF THE PARTY OF THE PAR
	1980-91	3.49	55-35	105-40	0.005629	0.005933		
						0-023909		0-04699
						0.000348		
	1948-64		A CONTRACTOR	- 1707/ASS		0.000535		
	1965-80		1127			0.000452		
	1980-91	3.49	48.90	10-10	0-004631	0-000468		0.00000
TOPOZESE	1970-47	2 07	59.74	24.20	0 00254	0-000669	A 000000	0 00000
44504886	1948-64					0.001165		
	1965-80					0.000892		C
	1980-91					0.000969		
						0-003634		0-00000
SACCAE.	1930-47	2-83	35.56	42-05	0.000000	0-000000	0.000000	0-00000
4271207	1948-64					0-001289		
	1965-80			100000000000000000000000000000000000000		0-001580		
•	1980-91	3.49	44.46	33-45	0.004945	0-001654		0-00000
ISCOST.	1930-47	2.83	43.22	42.05	0.000420	0-000177	0.00000	0.00000
	1948-64					0-001599		
	1965-80					0-001959		
	1980-91	3-49			0.007315	0-002447	0.000000	0-00000
						0-006181		0.00000
	1930-47					0.000000		
4292367	1948-64					0-001053		
	1965-80					0-001291		
	1980-91	3.49	49.75	66-95	0-002307	0-001544		0.00234
MECTRES	1930-47	2.81	39.90	84.10	0.000000	0:000000	0.00000	0.0000
	1948-64					0-000000		
	1965-80					0-000000		
	1980-91					0.000000		
						0-000000		0.00000
						0-084894		0-10999

MTOTO : V=0-194893

F

Takenga 3.11
HEPA BAKOBERSHY BOBPERARSHAR B SHERRETE CS-5*
SA BECK BEPHOA SKCHEYATAMM BOCTA

THE	27455			R0E-80	Bepa matornenns sompentennå or				
806889	826887- 2724881	****	EGREZ BSSPS-	1 64ete	1081808		8410808		
	rr.		datas		100000	N	100000	N	
		-	_	T SIL.					
1	2	2	4	5	•	7	8	9	
******	1930-47					0-008130			
Vep Reel	1948-64	100000	100		100000000000000000000000000000000000000	0-026155			
	1%5-80 1980-91					0-014783			
•	1760-71	3-70	-/0	103-40	0-021633	0-071891	4-421633	0-00000	
cuesas.	1930-47	2.96	54-14	138-00	0.003026	0-004177	0-003026	0.00000	
tapas	1948-64			130.30	0-009961	0-012979	0.009961	0-00000	
	1965-80	3-78	42-87			0-008707			
1	1980-91	3.78	46-35	105-40	0-010746	0.011327			
						0-037190		0-00000	
			F-100	10000000		0-000071			
	1948-64		100000			0-000206		The second second	
	1%5-80			77.75.77		0-000144			
	1980-91	3.78	40.50	10.10	0.002047	0-000207	0.000535		
	٠.					0-000628		0.00005	
10705226						0.000080			
	1948-64			0.0000000000000000000000000000000000000	A CONTRACTOR OF THE PROPERTY O	0.000296			
	1965-80			10.500		0-000221	A STOLEN OF THE RESIDENCE OF THE PARTY.	The State of the S	
	1980-91	3-78	32-82	20.00	0.001232	0-000306	400000000000000000000000000000000000000	0-00000	
Baccas.	1930-47	2.96	24-40	42.05	0.000000	0.000000	0.000000	0.00000	
Чардвот	1948-64	T. 100	100000000000000000000000000000000000000	95000000000		0.000000			
	1965-80		100 SEC. A CO.	100.000 1000		0.000000			
	1980-91	3.78	30.50	33.45	0-000644	0.000216	0-000000	0.00000	
						0-000216		0.00000	
ISOCSE-	1930-47	2-96	32-61			0-000000			
tapas	1948-64					0-000266			
	1965-80	1000000				0-000326			
	1980-91	3.78	40.76	33-45	0-001265	0-000423 0-001016		0.00000	
MECTREE	1930-47	2.96	26.70	84.10	0.000000	0-000000	0.000000	0.0000	
	1948-64					0.000000			
	1965-00					0-000000			
	1980-91	3.78	33-37	66-95	0-000944	0-000632			
						0-000632		0-00000	
	1930-47					0-000000			
+apa6	1940-64			60,530,530		0.000586			
	1965-80					0-000718			
	1980-91	3-78	38-79	66.95	0-001064	0-000712			
		_				0-002016		0-0000	
	1					0-114492		0-0000	

MTOFO : 0-114546

.

MOST93.PCX

Tabanda 3.12

MEPA MAROUNEMA MORPETARINA B SMEMERTE H6-7

SA. BECK MEPMOA SECHMYATAUMM MOCTA

THE	STARE OCCURY-		Mare:	R02-20	Хера нахотяения ховрездений от				
42	атации,		senus 610ce	n ener	1068708		SAPONOS		
•			durac		100000	N	100000	N	
1	2	3.	4	5	6	. 7	8	9	
cuesan.	1930-47	2.66	39-23	276-00	0.000000	0.000000	0-000000	0.000000	
	1948-64	2.86	38.80	260.60	0.000000	0.000000	0.000000	0.000000	
	1965-80	2.86	39.50	306-60	0.000000	0.000000	0.000000	0.000000	
	1980-91	2.86	28-80	210.80	0.000000	0-000000 0-000000	0.000000	0.000000	
meamorp.	1930-47	2.66	35.59	13.20	0-000000	0-000000	0.000000	0-000000	
	1948-64	2.86	35.20	12.50	0.000000	0.000000	0.000000	0.000000	
	1965-80	2.86	35-83	14-70	0-000000	0-000000	0.000000	0.000000	
	1980-91	2.86	35-20	10-10	0.000000	0.000000	0.000000	0.000000	
						0-000000		0-000000	
TOPOZNNE	1930-47	2.66	32-55	26-20	0.000000	0.000000	0.000000	0.000000	
	1948-64	2.86	32-20	24.70	0.000000	0-000000	0.000000	0.000000	
	1965-80	2-86	32.78	29-10	0.000000	0.000000	0.000000	0.000000	
	1980-91	2-86	32-20	20:00	0.000000	0.000000	0-000000	0.000000	
Taccas.	1930-47	2.66	27.01	84-10	0.000000	0.000000	0-000000	0.000000	
	1948-64	2.86	30-39	79.40	0.000000	0.000000	0.000000	0.000000	
	1965-80	2.86	30.39	97.30	0.000000	0-000000	0.000000	0-000000	
	1980-91	2.86	33.76	66.90	0-000000	0-000000	0.000000	0.000000	
		•				0-000000		0-000000	
нестине	1930-47	2.66	14-09				0-000000		
	1948-64	7.00	100000000000000000000000000000000000000	1 C.			0.000000	A CONTRACTOR OF THE PARTY OF TH	
	1965-80		17,000,000,000	194-70	0-000000	0-000000	0-000000	0.000000	
	1980-91	2.86	17-61	133.90	0.000000	0-000000	0.000000	0.000000	
						0-000000		0-000000	
						0-000000		0-000000	

#TOTO : V=0.000000

Table of metal sampling from bridge passage across Amudarya river near Chardzhev.

Sample	Span	structure	Truss	Truss element	Sampling place
No	No		left/right		

Most 119

Speed-torque characteristics of metal samples.

приложение і

Результаты дабораторных исследований механических характеристик металла

YTBEPKJAD:

Начальник службы ПУТИ Средне-Азиатской X.Д.

Таблица вырезки проб металла мостового перехода через реку Аму-Дарыю у г. Чардхоу

троения троения	ферма лев/прав	элемент элемент	место вырезки проб
2	3	4	5
2	лев	0 - I	уголок внешней ветви у нижнего
			узла
2	прав	0 - I	_ *** _
2	лев	I - 2	_ *** _
2	лев	2 - 3'	_ *** _
2	лев	3'-4	_ **** _
2	лев	4 - 5'	- *** -
2	лев	5' - 6	_ *** _
2	лев	6 - 7'	_ *** -
2	лев	5 - 5'	_ "" _
2	лев	4 - 5	нижний уголок внешней ветви
2	лев	5'- 6	_ "" _
2	лев	прод балка	уголок консоли прод балки
2	прав	_ "" _	_ *** _
5	лев	I - 2	уголок внешней ветви
-11			у нижнего поясф
5	лев	3' - 4	_ " _
5	лев	5' - 6	_ *** _
5	лев	6 - 7'	нижний уголок внешн ветви
5	лев	фасонка св	по месту
5		_ ** _	_ *** _
	2 2 2 2 2 2 2 5 5 5 5 5 5	2	2