

TRACECA - Project

Trade and Transport Sectors

Implementation of Pavement Management Systems

Turkmenistan
Tedjen - Mary Road
Improvement
Engineering Report

November 1997

Volume III

- Traffic and Economic Evaluation Report
- Environmental Assessment

KOCKS CONSULT GMBH Consulting Engineers Koblenz / Germany

in association with

TECNECON, Economic and Transport Consultants London / U. K.

PHØNIX Pavement Consultants Vejen / Denmark

		r
		•
		*
		•
		•
		•
		,
		•
		Ť
		•
		,
		,
· .		

TRAFFIC AND ECONOMIC EVALUATION REPORT

TEDJEN TO MARY ROAD

TRAFFIC AND ECONOMIC EVALUATION REPORT

CO	N	T	\mathbf{E}	N	T	S

	EXE	CUTIVE SUMMARY	(i)
1	INTI	RODUCTION	1-1
2	REV	IEW OF TRAFFIC STUDIES AND DATA	
	2.1	Identification and Preparation of a Road Rehabilitation Project in	
		Turkmenistan, 1994	2-1
	2.2	Road Improvement Project, 1995	2-2
	2.3 2.4	Study on Land Transport Corridors Between Central Asia and Europe	2-4
	Z. 4	Turkmenistan Highway Master Plan, Volume 2, Part III, Feasibility Study for Ashgabat to Mary	2-4
	2.5	Turkmenautoellari Traffic Data	2-4
	2.6	Carl Bro Traffic surveys, November, December 1996 and January 1997	2-6
3	STU	DY TRAFFIC SURVEYS	
	3.1	Classified Traffic Counts	3-1
	3.2	Axle Load Surveys	3-3
4	ANA	LYSIS OF BASE YEAR TRAFFIC	
	4.1	Estimate of Annual Average Daily Traffic (AADT)	4-1
	4.2	Estimate of Annual Number of Equivalent Standard Axles (ESA)	4-6
5	FUT	URE TRAFFIC FORECASTS	
	5.1	Forecast Scenarios	5-1
	5.2	Future Traffic ADT and Pavement Loadings	5-1
	5.3	Loadings for Pavement Design	5-7
6	PRO	JECT DEFINITION	
	6.1	Route Description	6-1
	6.2	Definition of Project	6-1
	6.3	Definition of "Without" Project Scenario	6-2

i

81141

7.	ECO	NOMIC EVALUATION	
	7.1	Introduction	7-1
	7.2	Construction and Maintenance Costs	7-1
	7.3	Vehicle Operating Costs	7-2
	7.4	Other Benefits	7-2
	7.5	Economic Analysis	7-3
	7.6	Sensitivity Analysis	7-4
8	CON	CLUSIONS	8-1
APPE	NDIC	ES	
Appen	dix A	1997 Classified Traffic Counts	
Appen	dix B	Forecasts ADT and One Way Cumulative ESA	
Appen	dix C	Existing Road Roughness Modified Structural Number and Rehabilitation Options	
Appen	dix D	HDM Input Data	
Appen	dix E	Strategy 1 - Do Minimum HDM - Output Cost Data	
Appen	dix F	Strategy 2 - Overlay and Reconstruction HDM - Output Cost Data	

81141

ii

EXECUTIVE SUMMARY

- 1. The Government of Turkmenistan commissioned Kocks Consult GmbH, to carry out a feasibility and design study for the rehabilitation of the section of road between Tedjen and Mary. This report has been prepared by TecnEcon for Kocks Consult GmbH and covers a review of traffic data, the results of further traffic surveys and forecasts of future traffic and pavement loadings. On the basis of these forecasts and the definition of "with project" and "without project" scenarios, an economic evaluation has been undertaken of the proposed project.
- 2. The review of earlier traffic studies and an in depth analysis of data provided by Turkmenautoellari was compared with the data collected from classified traffic counts carried out at three locations on the road between Mary and Tedjen. The traffic surveys were conducted for a continuous 34 hour period near to Mary and for two separate six hour counts at the two other locations. The result of this comparison indicated that the previous data had probably overestimated the traffic on the road.
- 3. Axle load surveys were also carried out at the survey site near to Mary, weighing trucks in both directions, one day each. The results of this survey showed fairly low average values for the Equivalent Standard Axes, ESA, per vehicle.
- 4. The traffic data was analysed and a base estimate made for Annual Average Daily Traffic, AADT, in 1997. The road was divided into three sections; Mary to Haus Khan, Haus Khan to the junction to Seraks near Tedjen and from the junction to Seraks near Tedjen to Tedjen with estimated AADT of 2,077, 1,548 and 3,088 vehicles per day respectively. The three sections showed quite different traffic volumes, mainly as a result of the two links to Seraks leaving a section in the middle with much less traffic.
- 5. Forecast of future traffic were considered based on assumptions of low, medium and high growth rates. In addition, an increase in the average value of ESA per vehicle was considered. Four scenarios were then defined low growth/existing ESA; medium growth/existing ESA; medium growth/increased ESA and high growth/increased ESA. With an assumed two year construction period and a 15 year analysis period, forecasts were made up to 2014.
- 6. Using the forecasts of future traffic and ESA per vehicle, one way cumulative total ESA were calculated for the pavement design. Approximately six million ESA was the cumulative total based on the medium growth/increased ESA scenario which was taken as the base case for design and evaluation purposes.

- 7. The economic evaluation considered a comparison between two strategies "do minimum" and "with project" cases. In the first case, realistic assumptions were made that the road would continue to receive routine maintenance and patching as required but that it would continue to deteriorate until a full reconstruction would be required, assumed to be 2007. In the second case, it was assumed that the road would receive overlay and reconstruction as indicated from the condition survey. Overlaid sections would additionally require further overlays in 2007. Routine and normal periodic maintenance would take place, based on responses to the pavement condition.
- 8. Data for the existing roughness and modified structural number of the pavement were obtained from surveys carried out on the road. These were used as input into the HDM Manager model used for the economic evaluation. Cost data for construction and overlay were calculated from a detailed breakdown of the works. The costs used for construction and maintenance were economic costs, which excluded taxes and transfers.
- 9. Vehicle Operating Costs and the value of travel time savings were taken from the Carl Bro International report for the Ashgabat to Tedjen section to allow for consistency of data and facilitate comparison.
- 10. Because the lengths of road for overlay and reconstruction were not continuous sections, the sections were grouped into combined lengths for overlay sections and reconstruction sections separately for each of the three traffic links, making a notional total of six sections for the economic analysis.
- 11. Cost streams for the two strategies, "do minimum" and "with project" were calculated for capital, recurrent maintenance, VOC and travel time for each of the six notional sections. These were totalled for the project road as a whole and the difference between the two cost streams was calculated as a stream of benefits for the "with project" case. The Net Present Value, NPV at 15 percent and the Economic Internal Rate of Return, EIRR were calculated from the benefit stream. These showed that the NPV at 15 percent would be 8.94 million US dollars and the EIRR would be 19.4 percent.
- 12. Sensitivity tests were carried out assuming variations in construction and maintenance costs and traffic benefits of plus and minus twenty percent. These tests showed that the EIRR would vary from 16.2 to 23.1 percent.
- In conclusion, the traffic studies have shown that existing traffic levels are lower than had been supposed. However, assuming realistic growth rates and a modest increase in average ESA per vehicle, the pavement should be designed to carry a cumulative total of six million ESA. On the basis of existing conditions and the forecast loading, rehabilitation treatments of overlay and reconstruction to be carried out in 1998/99 would yield an EIRR of 19.4 percent, making the project viable.

1 INTRODUCTION

In 1995, a feasibility study for road rehabilitation in the Republic of Turkmenistan was carried out with TACIS funding. On the basis of the findings of that study, the Government of Turkmenistan commissioned Kocks Consult GmbH, to carry out a feasibility and design study for the rehabilitation of the section of road between Tedjen and Mary. Similar consultancy services were commissioned for the section between Ashgabat and Tedjen which were carried out by Carl Bro International.

This report, prepared by TecnEcon for Kocks Consult GmbH, covers the review of traffic data, the results of further traffic surveys carried out in the course of the study and forecasts of future traffic and pavement loadings for the design process. On the basis of these forecasts and the definition of "with project"and "without project" scenarios, an economic evaluation has been undertaken of the proposed project. Finally, sensitivity analyses have been carried out to test the robustness of the economic evaluation.

2 REVIEW OF TRAFFIC STUDIES AND DATA

2.1 IDENTIFICATION AND PREPARATION OF A ROAD REHABILITATION PROJECT IN TURKMENISTAN

This study of the rehabilitation of the Ashgabat to Chardzou Road, the M37, was undertaken by an individual consultant, Y. Atlan, in 1994. The work covered an appraisal of the existing condition, traffic assessment and preliminary engineering design based on the forecast growth in traffic loadings.

Reference is made to a traffic survey carried out by Turkmenautoellari in August 1994 on the section between Ashgabat and Mary although the location is not specified. Table 2.1 shows the Average Daily Traffic (ADT) by vehicle type from this survey.

Table 2.1 AVERAGE DAILY TRAFFIC, AUGUST 1994, ASHGABAT TO MARY

Vehicle Type	Number
Cars	1900
Buses	170
Trucks, < 5t	730
Trucks, > 5t 2 axle, 4 tyres	420
Trucks, > 5t 2 axle, 6 tyres	240
Trucks, > 5t 3 axle	60
Trucks, > 5t 4 axle	110
Trucks, > 5t 5 axle	170
Total Light Vehicles	3220
Total Heavy Trucks	580
Total all vehicles	3800

Source: Indentification and Preparation of a Road Rehabilitation Project in Turkmenistan, 1994.

The number of equivalent standard axles was then calculated from assumed values for each vehicle type, as shown in Table 2.2

Table 2.2 EQUIVALENT STANDARD AXLES (ESA) IN 1994, ASHGABAT TO MARY

Vehicle Type	ESA per Vehicle	ADT	Annual ESA
Trucks, < 5t	0.02	420	1,533
Trucks, > 5t 2 axle + Buses	0.19	410	14,217
Trucks, > 5t 3 axle	0.56	60	6,132
Trucks, > 5t 4 axle	0.62	110	12,447
Trucks, > 5t 5 axle	0.94	170	29,164
TOTAL			63,493

Source: Indentification and Preparation of a Road Rehabilitation Project in Turkmenistan, 1994 and Consultants.

In the original study, the consultant incorrectly calculated the number of equivalent standard axles, as the one way ADT should have been used because only half the traffic uses each side of the road. Hence, the quoted value of ESA over a ten year design life assuming a growth rate of 4% should have been 762,000 ESA. In any case, with the above assumptions, the pavement loadings would be fairly insignificant.

2.2 ROAD IMPROVEMENT PROJECT, 1995

This study was carried out by Kocks Consult GmbH in association with TecnEcon Ltd in 1995. As far as the traffic aspects were concerned, existing data were used and no new traffic surveys were carried out apart from a simple origin-destination survey of international traffic at five border posts. Therefore the traffic data quoted in the report were taken from existing sources. In Table 2.3 the Annual Average Daily Traffic on the sections Mary to Haus Khan and Haus Khan to Khaka are shown for 1985 and each year between 1990 and 1994. It can be seen that there was some variation with no overall trend easily apparant.

Table 2.3 ANNUAL AVERAGE DAILY TRAFFIC, 1985 AND 1990 TO 1994

SECTION	1985	1990	1991	1992	1993	1994
Mary to Haus Khan	2733	2924	880د	3162	3300	2855
Haus Khan to Khaka	2177	2372	2476	2796	2525	2525

Source: Based on Turkmenautoellari traffic data, quoted in Road Improvement Project, 1995.

Other sources of data for 1994, however, showed higher values for the AADT, as can be seen in Table 2.4. The exact locations of the count stations were not indicated for any of the data and this could have a significant effect on the totals, particularly if the stations were close to the urban area and reflected urban/suburban traffic as opposed to inter-urban traffic.

Table 2.4 ANNUAL AVERAGE DAILY TRAFFIC, 1994

SECTION	Car	Bus	Utility	Truck 2 to 5t	Truck 5 to 8t	Truck > 8t	Total Light	Total Truck	Total Traffic
Mary - Haus Khan	2716	255	101	686	578	343	3072	1607	4678
Percentage	58%	5%	2%	15%	12%	7%	65%	35%	
Haus Khan - jnc. R7	1090	675	115	395	810	315	1880	1520	3400
Percentage	32%	20%	3%	12%	24%	9%	55%	45%	
Jnc. R7 - Tedjen	1123	327	738	594	654	763	2188	2011	4198
Percentage	27%	8%	18%	14%	16%	18%	53%	47%	

Source: Unknown, quoted in Road Improvement Project, 1995. Percentages calculated by the Consulants.

In the absence of any data, the study estimated the average value of the number of equivalent standard axles (ESA) per vehicle for different categories. These values are shown in Table 2.5.

Table 2.5 ESTIMATED ESA VALUES FROM ROAD IMPROVEMENT STUDY, 1995

Vehicle Type	ESA per Vehicle
Bus	0.4333
Truck, 2-axle, 2 to 5 tonnes payload	0.0976
Truck, 2-axle, > 5 tonnes payload	2.1735
Truck, 3-axle	1.1071
Truck, 4-axle	1.4721
Truck, 5-axle	3.1914

Source: Road Improvement Project, 1995

The Consultants on the Road Improvement Study found that because of the various political and economic changes, it was not possible to identify a trend for traffic growth from the past data. They therefore made certain assumptions for the growth in traffic which are summarised in Table 2.6.

Table 2.6 TRAFFFIC GROWTH ASSUMPTIONS, 1994 TO 2010

Vehicle Type	Average Annual Growth (%) 1994 - 2000	Average Annual Growth (%) 2001 - 2010
Car	5.0	6.0
Bus	5.0	6.0
Utility	5.0	6.0
Truck, 2-axle, 2 to 5 tonnes	5.0	6.0
Truck, 2-axle, > 5 tonnes	5.0	6.0
Truck, 3-axle	6.0	7.0
Truck, 4-axle	6.0	7.0
Truck, 5-axle	6.0	7.0
Weighted Average Growth	5.2	6.2

Source: Road Improvement Project, 1995

2.3 STUDY ON LAND TRANSPORT CORRIDORS BETWEEN CENTRAL ASIA AND EUROPE

This study was undertaken in 1995/96 by an expert from Turkmenistan and looked into the existing conditions and future potential for transit transport corridors through Turkmenistan. The study considered road, rail and ferry on the Caspian Sea and was based on a survey of existing data and other transport sector studies. As such, it reflects data used in other contemporary studies such as the Road Improvement Project reviewed above. In particular, the report quotes the traffic volumes on the section of the M37 Mary to Haus Khan and Haus Khan to Tedjen that are given in Table 2.4.

For forecasts of future traffic, the report notes that traffic growth in the past had been rather low and indicated an annual growth rate in the range 3% - 4% for roads in Turkmenistan since 1991. However, the report proposed that future growth rates would be higher and suggested 5% for the period 1996 to 2000 and 6% for 2001 to 2010.

2.4 TURKMENISTAN HIGHWAY MASTER PLAN, VOLUME 2, PART III, FEASIBILITY STUDY FOR ASHGABAT TO MARY

This study was financed in 1996 by the Turkish International Cooperation Agency, TICA to prepare a highway masterplan for Turkmenistan. It, too, relied on data quoted in previous studies to carry out the feasibility study for the rehabilitation of the road between Ashgabat and Mary. In addition to the data on traffic volumes that have already been shown in Table 2.3, the TICA study also included data for 66 sections of road throughout Turkmenistan for 1995 although there are no indications as to the locations of the survey stations. The data relevant to the sections between Tedjen and Mary are shown in Table 2.7.

Table 2.7 ANNUAL AVERAGE DAILY TRAFFIC, 1995

SECTION	Car	Bus	Utility	Truck 2 to 5t	Truck 5 to 8t	Truck > 8t	Total Light	Total Truck	Total Traffic
Mary - Haus Khan	2995	282	112	757	638	386	3389	1781	5170
Percentage	58%	5%	2%	15%	12%	7%	65%	35%	
Haus Khan - jnc R7	1202	745	127	436	894	354	2074	1684	3758
Percentage	32%	20%	3%	12%	24%	9%	55%	45%	
Jnc. R7 - Tedjen	1239	361	814	655	722	858	2414	2235	4649
Percentage	27%	8%	18%	14%	16%	18%	53%	47%	

Source: Unknown, quoted in Turkmenistan Highway Master Plan, Volume 2, Part III, Feasibility Study for Ashgabat to Mary. Percentages calculated by the Consultants.

The TICA consultants used the 1995 data to estimate the levels of service on the Ashgabat to Mary Road, concluding that at present no section had a level of service worse than C and hence there were no existing capacity problems. Growth rates similar to those assumed in the Road Improvement Project study were used to forecast future traffic levels. A summary of this analysis is shown in Table 2.8. From this it can be seen that the consultants forecasted future levels of service E on all sections. As a result, they proposed that the sections between Mary and Haus Khan and between Junction R7 and Tedjen should become a dual two lane carriageway after 2010 and the section between Haus Khan and Junction R7 should become a dual two lane carriageway after 2013.

The TICA consultants also carried out an analysis of the economic feasibility of rehabilitation of the road, not including the expansion of its capacity. For the section between Mary and Tedjen they concluded that the Internal Rate of Return (IRR) would range between 74% and 154% depending on the section and alternative strategy being considered, thus making the rehabilitation very worthwhile.

Tedjen to Mary Road Traffic and Economic Evaluation Report

TECNECON

EXISTING AND FUTURE TRAFFIC VOLUMES AND LEVELS OF SERVICE, TICA REPORT

Table 2.8

Section	Car	Bus	Truck	Articulated	1995)5	00	2010
				ָרָבְיּרָבְיּרָבְיִרָּבְּיִרְבָּיִרְבָּיִרְבְּיִרְבְּיִרְבְּיִרְבְּיִרְבְּיִרְבְּיִרְבְּיִרְבְּיִרְבְּיִרְבְּי	1		- }	
				T I UCK	AADI	Level of	AADT	Level of
						Service		Service
Mary to Haus Khan								
Volume	3107	282	1395	386	\$170	ار	14100	
Growth rate per annum	%9	%9	%9	7%)	14102	ם
Haus Khan to Junction R7								
Volume	1329	745	1330	354	3758		10084	<u></u>
Growth rate per annum	%9	%9	%9	7%)	10284	ם
Junction R7 to Tedjen								
Volume	2053	361	1377	858	4649	J	01001	ū
Growth rate per annum	%9	%9	%9	%,)	61671	ם

Source: Turkmenistan Highway Master Plan, Volume 2, Part III, Feasibility Study for Ashgabat to Mary.

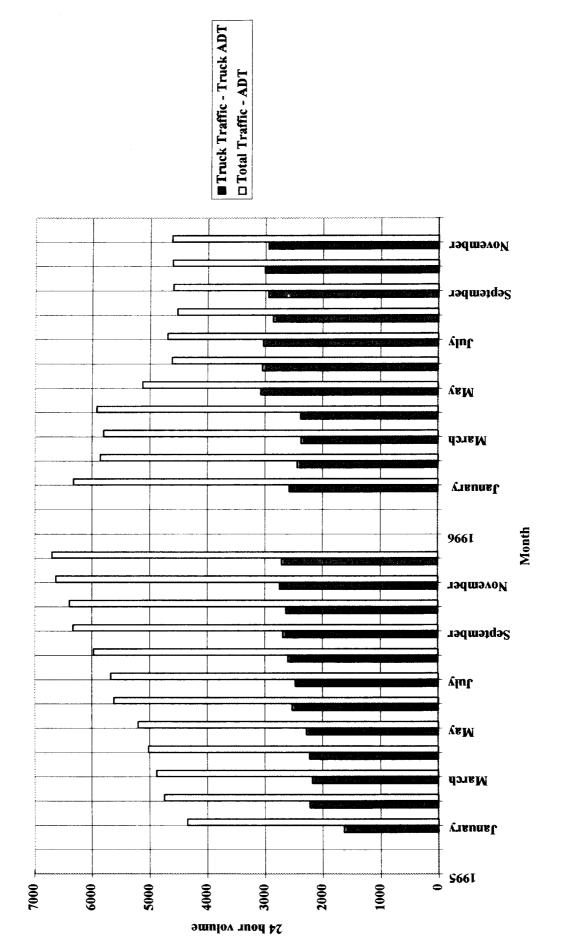
2.5 TURKMENAUTOELLARI TRAFFIC DATA

Average Daily Traffic (ADT) data classified by vehicle type were available for a survey station near Mary on the section between Mary and Haus Khan. The data were provided for every month of 1995 and January to November 1996 and are shown in Table 2.9 and are plotted in Figure 2.1. From the table and figure it can be seen that there are several anomalies in the data. For instance, the monthly variation as shown in Figure 2.1 exhibits a strange pattern comparing 1995 with 1996. Similarly, the number of trucks over 8 tonnes suddenly increases sharply in May 1996 by a factor of over three. Furthermore, although the 1995 AADT is of similar magnitude to that quoted in Table 2.7, it is not the same. Because of these inexplicable anomalies, these figures for monthly average daily traffic cannot be used with any confidence.

In Table 2.10, the data quoted in Tables 2.4 and 2.7 for the ADT in 1994 and 1995 are compared. It can be seen that the percentage distribution for both years are identical. For this to have happened on one section would be very unusual but for it to have occurred on three adjacent sections must be considered impossible. Furthermore, the growth rates on all three sections are identical, allowing for rounding errors, and with a rate of 11 percent, are extremely high. Thus these figure for 1994 and 1995 must also be viewed with suspicion and also cannot be used with any confidence.

2.6 CARL BRO TRAFFIC SURVEYS, NOVEMBER, DECEMBER 1996 AND JANUARY 1997

The Consultants working on the design and feasibility study for the section between Ashgabat and Tedjen carried out 24 hour classified traffic surveys in November and December 1996 and January 1997. A summary of these results are shown in Table 2.11. Apart from the counts taken at kilometre 0, which reflects the suburban traffic, the counts further away from Ashgabat show levels of traffic around 1800 to 2300 vehicles per day, which are considerably less than the previous studies quoted above.


CLASSIFIED MONTHLY AVERAGE DAILY TRAFFIC, ADJACENT MARY, 1995 AND 1996

Tedjen to Mary Road Traffic and Economic Evaluation Report

Table 2.9

to 5t 5t to 8t >8t Trucks Trutks Traffic 620 580 379 1639 38% 4352 815 810 504 2224 47% 4750 815 810 504 2224 47% 4750 730 789 590 2181 45% 4885 742 843 642 2228 44% 5027 811 922 703 2527 44% 5027 811 922 703 2527 44% 5027 811 922 703 2527 44% 5027 824 263 427 44% 5027 824 263 42% 639 785 989 784 263 42% 639 784 889 706 234 41% 66% 40% 784 889 706 258 40% 65% 40%		Car	Bus	Utility	Truck	Truck	Truck	Total	Percent	Total	Monthly
y 2481 620 650 670 680 379 1639 38% 4352 y 2105 421 96 815 810 504 2224 47% 4750 y 2105 421 95 815 80 504 2224 47% 4750 2216 4215 334 81 72 730 789 500 2181 44% 456 2215 441 81 742 801 604 2228 44% 502 2218 421 81 742 801 604 2228 44% 502 2210 434 81 92 704 247 44% 502 2210 524 80 823 654 247 44% 502 2210 530 534 825 694 247 44% 502 221 530 824 825 824 2	Period			<2t	2t to 5t	5t to 8t	>8t	Trucks	Trucks	Traffic	Variation
y 248 232 60 620 580 379 1639 38% 4352 y 2105 421 95 815 810 504 2224 47% 4750 2105 2415 334 71 841 801 604 2228 44% 5027 2512 412 84 712 843 642 2238 44% 5027 2512 412 84 712 843 642 2228 44% 5027 2512 412 84 712 843 642 2228 44% 5027 2512 412 84 712 843 642 2281 44% 5027 2511 502 412 843 823 825 694 2471 44% 5027 271 428 802 1001 804 2627 44% 5054 271 280 824 267	1995										
y 2105 421 95 815 810 504 2224 47% 4750 2165 3346 72 730 789 550 2281 45% 4885 2211 344 81 742 843 642 2281 44% 5027 2512 412 84 712 843 642 2281 44% 5027 2512 412 84 712 843 642 2281 44% 5027 2615 448 91 811 922 703 2527 44% 5027 2615 424 91 811 922 703 2527 44% 5027 2711 436 81 824 2671 44% 5027 10 2711 484 91 81 822 703 41% 6596 11 2711 484 81 824 2637 41% 6539	January	2481	232	09	620	580	379	1639	38%	4352	77%
2365 339 72 730 789 590 2181 45% 4885 2415 384 81 742 801 604 2228 44% 5027 2512 484 91 81 712 843 642 2281 44% 5025 2512 484 91 81 712 843 642 2281 44% 5025 2512 484 91 81 91 711 261 44% 5025 2711 502 88 834 855 694 2471 43% 5684 11 2711 502 88 834 855 694 2471 44% 5026 11 2711 261 88 802 1002 711 2601 44% 5074 11 271 300 584 81 1045 824 2751 41% 639 11 270	February	2105	421	95	815	810	504	2224	47%	4750	84%
2415 384 81 742 801 604 2228 44% 5027 2512 412 84 712 843 662 2281 44% 5205 2515 484 91 811 922 703 2527 45% 5205 2711 502 88 834 855 694 2671 44% 5684 1 2711 502 88 834 855 694 2672 44% 5684 1 2711 502 88 834 855 694 2672 47% 5684 1 271 502 88 834 824 2670 44% 5684 1 270 520 88 834 824 2670 44% 5694 1 270 520 874 808 824 274 44% 5694 1 270 520 524 828 8	March	2365	339	72	730	789	590	2181	45%	4885	87%
251 412 84 712 843 642 2281 44% 5205 261 484 91 811 922 703 2221 44% 5206 261 484 91 811 922 703 2627 45% 5026 271 502 88 802 1002 711 2601 44% 5626 281 564 80 802 1002 711 2601 44% 5684 282 564 80 802 785 989 784 2601 44% 5977 284 530 824 263 41% 6539 786 633 285 534 78 1045 824 275 41% 6336 287 301 784 889 824 275 41% 6336 289 524 273 41% 6536 42% 673 301	April	2415	384	18	742	801	604	2228	44%	5027	%68
2615 484 91 811 922 703 2527 45% 5626 2711 502 88 834 855 694 2471 45% 5626 per 2812 86 802 1002 711 2601 44% 584 per 3208 554 79 1010 804 2671 44% 597 per 3208 554 79 1010 804 2672 44% 597 per 3208 554 79 1045 824 2671 44% 597 per 3404 584 81 824 2671 44% 597 per 3404 584 81 824 2714 40% 6336 per 3404 584 81 824 2714 40% 6336 per 3404 584 824 2714 40% 6336 per 2896 <td>May</td> <td>2512</td> <td>412</td> <td>84</td> <td>712</td> <td>843</td> <td>642</td> <td>2281</td> <td>44%</td> <td>5205</td> <td>92%</td>	May	2512	412	84	712	843	642	2281	44%	5205	92%
2711 502 88 834 855 694 2471 43% 5684 per 2812 564 86 802 1002 711 2601 44% 5684 per 3102 542 91 785 1010 804 2692 42% 5397 per 3102 584 81 788 1045 824 2692 42% 5396 per 3301 586 83 788 1045 824 2673 41% 6539 per 3404 584 81 802 989 824 2750 41% 6539 per 3202 534 78 802 989 824 2750 41% 6530 per 522 548 824 275 448 858 824 42% 586 per 523 524 72 248 42% 586 per 524	June	2615	484	16	811	922	703	2527	45%	5626	100%
Der 3102 564 86 802 1002 711 2601 44% 5977 Der 3102 542 91 787 101 804 2692 42% 6396 Per 3208 554 79 785 989 784 2637 41% 6399 Per 3301 586 81 802 989 784 2637 41% 6339 Per 3404 584 81 802 824 2750 41% 6339 Per 3404 584 824 2751 41% 6339 Per 3404 824 2754 41% 633 Per 75 759 902 712 2448 41% 6330 Per 5290 529 713 238 706 2379 41% 5818 Per 1580 72 729 262 263 369 66% 4619<	July	2711	505	88	834	855	694	2471	43%	5684	101%
Der 3102 542 91 787 1010 804 2692 42% 6336 Por 3208 554 79 785 989 784 2637 41% 6390 Por 3301 586 83 798 1045 824 2750 41% 6330 Por 3301 586 83 798 842 2734 41% 6330 Por 3202 524 78 889 824 2734 41% 6330 Por 2896 824 2734 41% 6330 6330 6330 6330 6330 6330 6330 6330 6330 64% 64% 64% 64% 64%	August	2812	564	98	802	1002	7111	2601	44%	5977	106%
per 3208 554 79 785 989 784 2637 41% 6399 per 3301 586 83 798 1045 824 2750 41% 639 per 3404 584 81 802 989 842 2714 40% 6702 per 3202 544 78 784 898 824 2784 41% 6330 per 2896 524 77 889 706 2348 41% 6330 per 2896 73 78 889 706 2349 41% 6330 per 590 71 889 706 2348 41% 630 per 1511 59 871 751 2383 66% 469 per 1521 23 123 245 245 469 per 1530 245 245 245 469	September	3102	542	16	787	1010	804	2692	42%	6336	113%
per 3301 586 83 798 1045 824 2750 41% 6637 per 3404 584 81 802 989 842 2714 40% 6702 per 3404 584 81 802 982 2714 40% 6702 per 3202 544 78 88 824 2584 41% 630 per 2896 524 75 902 712 2448 42% 5868 per 2896 524 75 902 712 2448 42% 580 per 2902 715 889 706 2379 41% 5810 per 1989 62 871 751 2385 40% 65% 4619 per 151 29 263 263 263 263 4669 per 150 29 255 260 267 66%	October	3208	554	62	785	686	784	2637	41%	6399	114%
er 3404 584 81 802 989 842 2714 40% 6702 y 3202 544 78 898 824 2584 41% 6330 y 2896 524 75 902 712 2448 42% 5868 y 2896 524 75 902 712 2448 42% 580 y 2896 524 75 902 712 2448 42% 580 y 2896 524 75 902 712 2448 42% 580 3001 544 71 692 871 751 41% 580 5930 1989 62 34 119 295 2632 3080 66% 4619 151 59 22 259 2585 3049 66% 4699 1520 68 30 258 2585 386 65% 46	November	3301	286	83	798	1045	824	2750	41%	7699	118%
y 3202 544 78 898 824 41% 6330 y 2896 524 75 759 902 712 2448 41% 6330 y 2896 524 75 759 902 712 2448 42% 5868 1989 62 715 889 706 2379 41% 5810 1989 62 34 71 692 871 751 2448 42% 5868 1989 62 34 71 692 871 751 2385 40% 5810 1989 62 34 119 295 2632 3080 66% 4619 151 59 29 29 258 3049 66% 4619 1520 83 17 27 245 266 4699 152 27 245 260 3049 64% 4606 1601	December	3404	584	81	802	686	842	2714	40%	6702	119%
y 3202 544 78 784 898 824 41% 6330 y 2896 524 75 759 902 712 2448 42% 5868 1 2902 529 715 889 706 2379 41% 5810 1 2902 529 715 889 706 2379 41% 5810 1 3001 544 71 692 871 751 2385 40% 5810 1 1989 662 34 119 295 2632 304 66% 4619 1 1 63 22 263 263 463 4619 1 1 2 2 2 2 2 2 4639 4636 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1996										
y 2896 524 75 759 902 712 2448 42% 5868 1 2902 529 69 715 889 706 2379 41% 5810 3001 544 71 692 871 751 2385 40% 5930 1989 62 34 119 295 2632 3080 60% 5131 151 59 29 123 302 2632 3049 66% 4619 151 59 29 123 302 2585 3049 66% 4619 1520 61 30 117 270 2450 2867 66% 4606 1520 83 117 271 2450 2867 64% 4616 1520 83 123 212 253 2949 64% 4616 1995 2753 467 253 2949 64% 4616	January	3202	544	78	784	868	824	2584	41%	6330	123%
2902 529 69 715 889 706 2379 41% 5810 1 3001 544 71 692 871 751 2385 40% 5930 1 1989 62 34 119 295 2632 3080 60% 5131 1 151 59 29 123 302 2632 3080 66% 4619 1 151 59 29 123 302 2585 3049 66% 4619 1 1529 68 30 117 270 2450 2867 65% 4699 1520 83 117 271 2450 2867 64% 4606 1520 83 123 265 2650 3013 65% 4616 1995 2753 467 83 770 886 673 64% 4616 1996 2127 239 45	February	2896	524	75	759	905	712	2448	42%	5868	114%
3001 544 71 692 871 751 2385 40% 5930 1 1989 62 34 119 295 2632 3080 60% 5131 1989 62 34 119 295 2632 3080 60% 4619 151 59 12 29 259 3049 66% 4619 150 63 32 120 258 258 469 469 150 63 73 12 270 2450 2867 66% 4606 152 27 28 2515 2951 64% 4606 152 28 251 265 260 3013 65% 4616 152 28 120 271 253 264 4616 4616 1995 2753 467 83 770 886 673 2412 5632 1996 2127 <	March	2902	529	69	715	688	902	2379	41%	5810	113%
1989 62 34 119 295 2632 3080 60% 5131 151 59 29 259 3049 66% 4619 151 59 123 302 2585 3049 66% 4619 150 160 68 30 117 270 2450 2867 65% 4699 152 158 75 123 286 2515 2951 64% 4606 152 83 123 265 2600 3013 65% 4616 194 75 28 120 271 253 64% 4616 195 275 260 3013 64% 4616 666 195 275 28 120 271 2530 2412 4616 1996 2127 239 45 46 4625 266 2412 2412 2412 2412 2412 2412 2412 </td <td>April</td> <td>3001</td> <td>544</td> <td>71</td> <td>692</td> <td>871</td> <td>751</td> <td>2385</td> <td>40%</td> <td>5930</td> <td>115%</td>	April	3001	544	71	692	871	751	2385	40%	5930	115%
1511 59 29 123 302 2595 3049 66% 4619 1601 63 32 120 298 2585 3035 65% 4699 oer 1590 68 30 117 270 2450 2867 63% 4534 oer 1520 75 123 286 2515 64% 4606 oer 1520 83 125 260 3013 65% 4616 oer 1601 75 28 120 271 2530 65% 4616 1995 2753 467 88 770 886 673 2412 563 1996 2127 239 45 45 563 5161	May	1989	62	34	119	295	2632	3080	%09	5131	%66
1601 63 32 120 298 2585 3035 65% 4699 5er 1599 68 30 117 270 2450 2867 63% 4534 4606 5er 1520 83 27 123 265 260 3013 65% 4616 4616 5er 1601 75 28 120 271 2530 2949 64% 4625 2632 1995 2127 239 45 88 673 2412 5632 5632 1996 2127 239 45 45 563 563 563	June	1511	59	29	123	302	2595	3049	%99	4619	%06
ber 1580 68 30 117 270 2450 2867 63% 4534 4606 ber 1580 75 23 286 2515 2951 64% 4606 4606 ber 1520 83 123 263 260 3013 65% 4616 4616 ber 1601 75 28 120 271 2530 2949 64% 4625 2623 1996 2127 239 45 88 673 2412 5632 5632 1996 2127 239 45 45 563 5161 5161	July	1601	63	32	120	298	2585	3035	65%	4699	%16
er 1580 75 27 123 286 2515 2951 64% 4606 er 1520 83 125 265 2600 3013 65% 4616 er 1601 75 28 120 271 2530 2949 64% 4625 995 2127 467 48 470 886 673 2412 64% 4625 996 2127 239 45 45 5632 2532	August	1599	89	30	117	270	2450	2867	63%	4534	88%
er 1520 83 23 123 265 2600 3013 65% 4616 er 1601 75 28 120 271 2530 2949 64% 4625 996 2127 239 45 45 88 673 2412 64% 5632 996 2127 239 45 45 345 504 1900 2795 5161	September	1580	75	27	123	286	2515	2951	64%	4606	%68
1601 75 28 120 271 2530 2949 64% 4625 2753 467 83 770 886 673 2412 5632 2127 239 45 345 504 1900 2795 5161	October	1520	83	23	125	265	2600	3013	92%	4616	%68
2753 467 83 770 886 673 2412 5632 2127 239 45 345 504 1900 2795 5161	November	1091	75	28	120	271	2530	2949	64%	4625	%06
2127 239 45 345 504 1900 2795	AADT 1995	2753	467	83	170	988	673	2412		5632	
	AADT 1996	2127	239	45	345	504	1900	2795		5161	

Figure 2.1 MONTHLY TRAFFIC VARIATION, 1995 & 1996 TEDJEN TO MARY

81141

TECNECON

Tedjen to Mary Road Traffic and Economic Evaluation Report

Table 2.10 COMPARISON OF TRAFFIC VOLUME, DISTRIBUTION AND INCREASE BY VEHICLE TYPE FOR 1994 AND 1995

					AVERA	AVERAGE DAILY TRAFFIC	LAFFIC			
Section	Year	Car	Bus	Utility		Truck		Total	Total	Total
			770		2 to 5t	5 to 8t	> 8t	Light	Truck	Traffic
Mary - Haus Khan	1994	2716	255	101	989	578	343	3072	1607	3/178
Mary Hans Khan	1005	2005	200					7/00	1001	0/0+
ivially - Lidus Mildil	1773	C227	707	112	151	638	386	3389	1781	5170
Haus Khan - jnc. R7	1994	1090	675	115	395	810	315	1880	1520	2400
House When in D7	1005	2001	216				2:0	0001	0701	2400
naus Mian - Juc. K/	1993	7071	/45	127	436	894	354	2074	1684	3758
Jnc. R7 - Tedjen	1994	1123	327	738	594	654	763	2100	1100	4100
Inc D7 Todie	1005	0001	170				501	0017	1107	4198
Juc. K/ - 1 eajen	1993	1621	301	814	655	722	858	2414	2235	4649

					PERCENT	PERCENTAGE DISTRIBUTION	BUTION			
Section	Year	Car	Bus	Utility		Truck		Total	Total	Total
					2 to 5t	5 to 8t	\$ 8 ^	Light	Truck	Tueffic
Man, Hans Vhan	1007	7085	/02					111911	TIRCY	Lanne
ivially - Haus Milain	1224	0/00	0,70	%7	15%	12%	%	%99	70/2	1000/
Mom, Unit Vhon	1005	7003	70.3	,00				200	0/10	100/0
May - Haus Miall	1993	0/00	0%6	%7	15%	12%	%/	%99	34%	100%
	,									0.001
Unite Vhon inc D7	1001	7307	/000							
Haus Miail - Jill. IN	1774	3270	70%	3%	12%	24%	%6	7055	7031	1000
Hans Vhan inc D7	1005	230/	2000				211	0/00	6/07	100%
rians Midil - Jile. IV	1773	0/76	0Z07	3%	12%	24%	%6	25%	45%	100%
Inc R7 - Tedien	1004	27%	708	100/		, 30,				-
3110. 1X/ - 1 Cajon	1//1	0/17	0/0	10%0	.4%	%9I	18%	%65	7087	1000/
Inc R7 - Tadian	1005	70LC	700	1001				2/22	0/01	10/001
one: ix, - reajem		0/17	0 / 0	1070	14%	%9I	18%	52%	48%	100%
										•

				PERCE	PERCENTAGE INCREASE BETWEEN 1994 AND 1995	EASE BETWI	EEN 1994 AN	D 1995		
Cootion	, COO	7.50	2	7.1.0.7.1.M						
Section	rear	Car	Sng	Utility		Truck		Total	Total	Total
			_		7 2 7 6	-				
					16 01 7	5 to 8t	~ ^	Light	Truck	Traffia
Mon, Unit Vhan	2001 1001	1001	711						1 1 HCB	TIGITIC
May - Haus Milan	1994-1993	1070	%11%	21%	10%	10%	13%	10%	110%	110/
Usus VLsa in no	1004 1005	1001		, , ,				201	0/11	0/11
riaus Miaii - Juc. R/	1994-1993	10%	%01	%01	10%	10%	12%	10%	110%	110/
Inc Dr Tedian	1004 1005	1001	700.	, 50,					0/11	0/11
Juc. N/ - Tedjen	1994-1993	10%	10%	10%	10%	10%	12%	10%	11%	110%
Course Bood I 1005 Till 1	3001 7	Tlane		, ,				3	0/11	0/11

Source: Road Improvement Study 1995, Turkmenistan Highway Masterplan, 1996 and Consultants analysis.

ASHGABAT TO TEDJEN - TRAFFIC SURVEY COUNTS, NOVEMBER, DECEMBER 1996, JANUARY 1997 Table 2.11

Tedjen to Mary Road Traffic and Economic Evaluation Report

Location	_	3			I ruck >2t			Total	Total	Total	Monthly	Monthly
			2 - axle	3 - axle	4 - axle	5 - axle	6 - axle	Trucks	Light Vehcles	ADT	Variation	Variation
Ashgabat Km 0											LLUCKS	All
Nov-96	11716	1107	2030	269	93	271	19	3110	12823	15933	180%	1,60%
Dec-96	10017	1033	1928	483	85	208	36	2740	11050	13790	10/0	10%
Jan-97	8383	924	1334	430	75	195	23	2057	9307	11364	7000	170/1
Average 3 months	10039	1021	1764	537	84	225	26	2636	11060	13696	0/77-	-1176
Ashgabat Km 70												
96-voN	1067	226	337	166	98	128	-	718	1293	2011	705	120/
96-oaC	1673	313	366	170	96	130	10	992	1986	7757	9/0-	-1370
Jan-97	1204	187	389	206	92	83	101	780	1301	1717	29/	1970
Average 3 months	1315	242	364	181	89	114	7,	755	1557	7311	370	-070
										11.62		
Ashgabat Km 170												
Nov-96	604	198	909	210	96	83	3	868	802	1700	705	/05
Dec-96	771	195	525	184	100	120	6	938	996	1904	7001	0/6-
Jan-97	953	103	304	186	81	103	45	719	1056	1775	791	10%
Average 3 months	9//	165	445	193	92	102	19	852	941	1703	0/01-	0/1-

3 TRAFFIC SURVEYS

3.1 CLASSIFIED TRAFFIC COUNTS

Classified traffic counts were carried out at three locations on the road between Mary and Tedjen on 11 and 12 February 1997 as follows:

- 7 km from Mary towards Tedjen;
- at the junction with the road to Seraks at Haus Khan; and
- at the junction with the R7 near to Tedjen.

At the site near to Mary, the count was carried out for a continuous period of 34 hours, providing a full 24 hour count and a second 10 hour count for the daylight hours. At the other two locations, six hour counts were undertaken within the period that counting was going on near Mary so that factors could be applied to estimate the full 24 hour volumes.

The counts near Mary were made for each direction separately. At the other two locations, however, full turning counts were made, allowing the two way volumes on each leg of the junction to be calculated.

The traffic was classified into the following categories:

- Agricultural tractor;
- Car:
- Bus;
- Utility van;
- 2 axle truck, <5 tonnes;
- 2 axle truck, >5 tonnes;
- 3 axle truck;
- 4 axle truck;
- 5 axle truck;
- 6 axle truck; and
- Other, which would mainly cover motorcycles.

The survey forms used in these counts are shown in Appendix A - Traffic Survey Results. The data collected at the three sites are shown in Tables A.1 to A.12 in Appendix A. A summary of the results is shown in Table 3.1

SUMMARY OF CLASSIFIED TRAFFIC COUNTS

Table 3.1

Tedjen to Mary Road Traffic and Economic Evaluation Report

Location and	Agri	Car	Bus	Utility			Truck >2t			Other	Total	Total	
Time Period	Tractor			4	2 - axle	3 - axle	4 - axle	5 - axle	6 - axle		Trucks	Light Vehicles	Total
Mary												v chircles	
24 hour count						***************************************					-		
Mary to Tedjen	57		62	13	152	99	12	7.1	C	-	300	720	1020
Tedjen to Mary	58	292		30	133	49	24	45	· C	2 0	202	5 5	1032
Total two way*	114	1155	116	42	283	115	36	116	0	20	550	1447	1001
Mary										ì	25		1771
10 hour count													
Mary to Tedjen	52	307	32	7	78	31	6	43	<u> </u>	=	171	001	023
Tedjen to Mary	30	262	34	6	65	28	7	24	· C	7	101	404	0/5
Total two way	82	695	99	16	143	59	16	29	0	- 81	786	242	1036
Haus Khan										?	67	10)	0001
6 hour count													_
Two way to Mary	36	260	30	∞	108	41	7	47	0	_	202	325	620
Two way to Tedjen	32	219	23	9	64	18	7	14	· c	- ~	103	200	200
Two way to Seraks	14	53	6	2	48	25	0	33	0	, ,	701	607	701
Near Tedjen											3	00	190
6 hour count				-								-	4
Two way to Mary	19	273	16	2	78	33	10	27	c	~	178	212	177
Two way to Tedjen	32	521	33	S	158	51	18	27	· c	, ,	047	500	401
Two way to Seraks	35	302	17	e.	106		∞	0	0	. 4	132	361	707
											7,7	100	2/1

Totals differ due to rounding errors Traffic Surveys

Source:

3.2 **AXLE LOAD SURVEYS**

At the same time as the classified counts, axle load surveys were conducted at the same location just outside Mary. The eastbound trucks were weighed on the 11 February 1997 and westbound on 12 February. The period of weighing was continuous between 08.30 and 18.00 on both days and the sample weighed represented virtually 100 percent of all trucks that passed. Thus the average value of ESA per vehicle for each category of vehicle reflects the proportion of load, partially loaded and empty vehicles that was in the traffic stream on the survey days. A summary of the axle load data and the calculated equivalent standard axles is shown in Table 3.2.

In addition, the Consultants also carried out an axle load survey in November 1996 just outside Ashgabat on the Ashgabat to Mary Road. The results of this survey are also included in Table 3.2.

Table 3.2 RESULTS OF AXLE LOAD SURVEYS

Ve	chicle Type	Number	Total	Average	Maximum	Minimum
		Weighed	ESA	ESA	ESA	ESA
Date	11 & 12/2/97		Location	Mary 7 km		
Eastbound:	Tedjen to Mary					
Bus		4	3.20	0.80	1.76	0.01
Truck	2 - axle	69	38.28	0.55	26.82	0.00
Truck	3 - axle	16	1.47	0.09	0.33	0.01
Truck	4 - axle	15	34.65	2.31	8.77	0.24
Truck	5 - axle	20	39.70	1.99	4.80	0.06
Average all	trucks	120	114.11	0.95	26.82	0.00
Westbound:	Mary to Tedjen					
Bus		0	0.00	0.00	0.00	0.00
Truck	2 - axle	85	10.85	0.13	2.29	0.00
Truck	3 - axle	25	7 33	0.29	5.14	0.00
Truck	4 - axle	8	19.16	2.40	10.26	0.06
Truck	5 - axle	34	23.98	0.71	10.62	0.02
Average all	trucks	152	61.33	0.40	10.62	0.00
Date	27 & 28/11/96		Location	Ashgabat		
Eastbound: A	Ashgabat to Tedjen					
Bus						
Truck	2 - axle	169	21.60	0.13	5.05	0.00
Truck	3 - axle	103	51.64	0.50	5.43	0.01
Truck	4 - axle	15	40.90	2.73	8.50	0.02
Truck	5 - axle	37	182.02	4.92	62.11	0.06
Average all t	rucks	323	296.16	0.92	62.11	0.00
Westbound:	Tedjen to Ashgabat					
Bus					T I	
Truck	2 - axle	165	63.53	0.39	4.18	0.00
Truck	3 - axle	82	21.62	0.26	4.04	0.01
Truck	4 - axle	13	45.99	3.54	9.51	0.07
Truck	5 - axle	29	34.97	1.21	8.40	0.04
Average all t	rucks	289	176.41	0.61	9.51	0.00

Source: Consultants' axle load surveys

4 ANALYSIS OF BASE YEAR TRAFFIC

4.1 ESTIMATE OF ANNUAL AVERAGE DAILY TRAFFIC (AADT)

The results of the traffic surveys described in section 3 have been analysed to produce estimates of AADT at the three survey locations.

For the location near Mary, the traffic survey data has been presented as:

- a 24 hour total, covering the period 08.00 on 11 February to 08.00 on 12 February; and
- a 10 hour total, covering the period 08.00 on 12 February to 18.00 on 12 February.

The data for the 10 hour period has been multiplied by the 10 to 24 hour factor from the 24 hour count to produce an estimate of the 24 hour volume for the second day. An average has then been taken to produce an estimate of Average Daily Traffic, ADT, near to Mary.

For the location near to Tedjen, at the junction of R7, the 6 hour count on the 11 February has been converted into an estimated 24 hour total by using the 6 to 24 hour factors from the Mary 24 hour count. As the numbers are small an adjustment was made to allow for the time of transit between the two stations as trucks counted in the period 12.00 to 13.00 that were coming from Mary would have been counted in the period 11.00 to 12.00. Similarly, trucks going towards Mary that were counted in the period 17.00 to 18.00 would not appear at Mary until the period 18.00 to 19.00. The factors that were used and the adjustments that were made are shown in Table 4.1.

For the location near to Haus Khan, the 6 hour count on the 12 February has been converted into an estimated 24 hour total by using the 6 to 24 hour factors from the Mary 24 hour count estimated for 12 February. In this case it was not necessary to make any adjustments. The factors that were used are shown in Table 4.2.

The estimated 24 hour totals at each of the three locations has been used to produce an average value for the section, see Table 4.3. As turning counts were taken at Haus Khan and Junction R7 near Tedjen, two-way volumes were derived for each leg, hence the estimated traffic on the sections Mary to Haus Khan and Haus Khan to Junction R7 near Tedjen are the average of the traffic at each end of the section. Only the section from the Junction R7 near Tedjen to Tedjen is based on the traffic from a single source. It should be noted though, that as the road approaches Tedjen, there will be an increasing volume of suburban traffic although it is very unlikely that this would increase the estimated number of equivalent standard axles as the majority of the increased traffic would be light passenger vehicles.

The traffic counts are considerably lower than those quoted in previous studies and also when compared with previous traffic counts. There can be several reasons for this:

- there has been a decrease in traffic volumes;
- the seasonal variation factors are very high;

Tedjen to Mary Road Traffic and Economic Evaluation Report

FACTOR OF 6 HOUR TO 24 HOUR FOR COUNTS AT JUNCTION R7 MEAR TEDJEN

Table 4.1

Agri	Car	Bus	Utility			Truck >2t			Other	Total	Total	
actor			4	2 - axle	3 - axle	4 - axle	5 - axle	6 - axle		, A	Light Vehicles	Total
48	332	41	11	82	41	11	22	0	7	156	439	595
**				10	4	3	18	-		27		27
114	1155	116	42	283	115	36	116	0	20	550	1447	1997
2.38	3.48	2.83	3.82	3.08	3.11	2.57	2.90	0.00	2.86	3.01	3.30	3.21

Source: Consultants' traffic surveys

Table 4.2 FACTOR OF 6 HOUR TO 24 HOUR FOR COUNTS AT HAUS KHAN

Time	Agri	Car	Bus	Utility			Truck >2t			Other	Total	Total	
Period	Tractor		•	4	2 - axle	3 - axle	4 - axle	5 - axle	6 - axle		Trucks	Light Vehicles	Total
11:00 to 17:00	42	337	40	11	16	32	12	43	0	12	178	1	620
Adjustment													
Total 24 hr est.	113	1167	117	43	244	126	41	116	0	42	527	1481	2008
6 hour factor	2.68	3.46	2.92	3.92	2.68	3.94	3.42	2.69	0.00	3.47			3.24

Source: Consultants' traffic surveys

TECNECON

ESTIMATED 24 HOUR TOTALS Table 4.3

Tedjen to Mary Road Traffic and Economic Evaluation Report

Mary to Haus Khan Section Location Mary day 1 Average Haus Khan Average	Tractor		1	Cullity		-	Truck >2t			Other	Total	Total	
	_			7	2 - axle	3 - axle	4 - axle	5 - axle	6 - axle		Trucks	Light	Total
	-	1166	711	3	000							Vehcles	
	112	1167	110	47	283	115	36	116	0	20	550		1997
	CII	110/		43	244	126	41	116	0	42	527	1481	2008
	114	1161	117	43	264	121	39	116	С	31	640		2000
Average	62	006	88	31	343	191	24	127	· c	, ,	040	1710	2000
2977	901	1031	103	37	304	141	32	122		ء ا	600	1119	1//4
						7	75	771	5		599	1294	1893
Louis Vhoa	70	036	-										
	00	96/	/9	24	207	71	24	38	<u> </u>	2	000	3,70	100.
Haus Khan to Tedjen	45	950	45	∞	266	103	26	2 %	· C	2 0	727	247	1284
Saraks Junction near Tedien Average	99	854	35	16	227	100	100	2	>	,	4/3	1056	6701
			3	2	153	ò	3	28	0	10	407	1002	1409
Complete Little adjance Transfer Little Andrews		0.01	1										
Salaks Junction near Teajen to Teajen	9/	1813	93	19	503	159	46	78	0	20	786	2021	7807
ledjen		_									3	1707	7007
Source: Consultants' traffic surveys													

- the locations of survey sites has been too close to urban areas; or
- there have been errors in the collection or analysis of the traffic data.

Whatever the reason, it seems reasonable to be confident that the traffic survey conducted by the Consultants do reflect the current levels of traffic. They are broadly consistent with the survey data collected by Carl Bro in the period November 1996 to January 1997 and are consistent within the three sites at which counts were undertaken. It is proposed therefore that these data are used as the basis for forecasting future traffic demand on the road between Tedjen and Mary.

However, some allowance has to be made for the fact that the traffic surveys were carried out in the winter period and therefore do not reflect the higher volumes of traffic that could be expected in the summer period. Without data on seasonal variations and assuming that February is likely to be lower than the average for the year because of the winter effects, it has been assumed that the Annual Average Daily Traffic (AADT) is 10 percent higher than that observed in February. Hence, estimates of the AADT on each section have been made by increasing the ADT from the February traffic surveys by 10 percent. The resulting values are shown in Table 4.4.

The traffic analysis has been carried out for the ten categories of vehicles to permit comparison with previous reports. However, for the input in the economic evaluation model HDM Manager, slightly different categories are required. Furthermore, in order to facilitate comparison with the Carl Bro study for the section Ashgabat to Tedjen, the same categories used by them in their HDM Manager analysis have been adopted. Table 4.4 has been modified to take account of this and the resulting traffic volumes by vehicle type for use in the economic evaluation are shown in Table 4.5.

TECNECON

ESTIMATED AVERAGE ANNUAL DAILY TRAFFIC, AADT

Table 4.4

Tedjen to Mary Road Traffic and Economic Evaluation Report

Light Vehcles 6 1292 6 1421 6 1001 7 1101 6 2021 5 2223			Agri	Car	Bus	Utility			Truck >2t			Other	Total	Total	
Survey 105 1030 102 37 303 141 31 121 0 17 596 Est. AADT 116 1133 112 41 334 155 34 133 0 17 596 sn Survey 66 854 56 16 237 87 25 58 0 9 406 Est. AADT 72 939 62 17 260 95 27 64 0 10 447 Survey 76 1813 93 19 503 159 46 78 0 20 786 Est. AADT 84 1994 103 21 553 174 51 86 0 20 786 2	Section	Source	Tractor			4	2 - axle	3 - axle	4 - axle	5 - axle	6 - axle		Trucks	Light Vehcles	Total
Survey 66 854 56 16 237 87 25 58 0 9 406 Est. AADT 72 939 62 17 260 95 27 64 0 10 447 Survey 76 1813 93 19 503 159 46 78 0 20 786 Est. AADT 84 1994 103 21 553 174 51 86 0 22 865	Mary to Haus Khan	Survey Est. AADT	105	1030	102	37	303				0	17	596		1888
Survey 76 1813 93 19 503 159 46 78 0 20 786 Est. AADT 84 1994 103 21 553 174 51 86 0 22 865	Haus Khan to Saraks Junction near Tedjen	Survey Est. AADT	66	854	56	16						9 10	406		1407
	Junction to Seraks near Tedjen to Tedjen	Survey Est. AADT	76	1813	93	19			46		0 0	22	786		3088

Table 4.5

ESTIMATED AVERAGE ANNUAL DAILY TRAFFIC, AADT, CLASSIFIED INTO CATEGORIES FOR ECONOMIC EVALUATION

Section	Car	Utility Etc.	Bus	Medium Truck	Heavy Truck	Articulated Truck	Total Light Vehcles	Total Trucks	Total All Vehicles	
Mary to Haus Khan	1133	175	112	334	155	168	1421	959	2077	1
Haus Khan to Saraks Junction near Tedjen	939	100	62	260	95	16	1101	447	1548	
Junction to Seraks near Tedjen to Tedjen	1994	127	103	553	174	137	2223	865	3088	

Source: Consultants

81141 05/08/97

4.2 ESTIMATE OF ANNUAL NUMBER OF EQUIVALENT STANDARD AXLES (ESA)

A comparison of the axle load survey results with previous estimates is shown in Table 4.6. The values from the two surveys conducted by the Consultants are for the eastbound direction as this was the heaviest. As can be seen, the values vary considerably which implies that any forecasts need to be viewed with caution.

Table 4.6 COMPARISON OF ESA VALUES

Vehicle Type	Estimates 1994	Estimates 1995	Axle Load Survey 1996	Axle Load Survey 1997
	ESA per Vehicle	ESA per Vehicle	ESA per Vehicle	ESA per Vehicle
Bus	0.19	0.43		0.80
Trucks, < 5t	0.02	0.10		
Trucks, > 5t 2 axle	0.19	2.17	0.13	0.55
Trucks, > 5t 3 axle	0.56	1.11	0.50	0.09
Trucks, > 5t 4 axle	0.62	1.47	2.73	2.31
Trucks, > 5t 5 axle	0.94	3.19	4.92	1.99

Source: Various, see Tables 2.4, 2.7 and 3.2.

Using the survey values and the estimated AADT on each section of the road, the base year loadings have been calculated expressed in the number of equivalent standard axles, ESA. These results are shown in Table 4.7 for the eastbound direction as this was the more heavily laden. Table 4.8 shows the survey results for the four categories of heavy vehicles used in the economic evaluation.

Table 4.7 BASE YEAR PAVEMENT LOADINGS IN ESA

Section	Vehicle Type	Average	ADT	Annual
50011011		ESA		ESA
Manual House Whom	Eastbound			
Mary to Haus Khan	Bus	0.80	56	16377
	Truck 2 - axle	0.55	167	33783
	Truck 3 - axle	0.09	77	2595
	Truck 4 - axle	2.31	17	14472
	Truck 5 - axle	1.99	67	48301
	TOTAL		384	115529
Haus Khan to Junction R7	Eastbound			
	Bus	0.80	31	9027
	Truck 2 - axle	0.55	130	26365
	Truck 3 - axle	0.09	48	1598
	Truck 4 - axle	2.31	14	11508
	Truck 5 - axle	1.99	32	23112
	TOTAL		254	71610
I	Eastbound			
Junction R7 to Tedjen	Bus	0.80	51	15001
	Truck 2 - axle	0.55	277	56004
	Truck 2 - axle	0.09	87	2924
	Truck 4 - axle	2.31	25	21464
	Truck 5 - axle	1.99	43	31205
	TOTAL	1.55	484	126599

Source: Consultants' traffic and axle load surveys.

Table 4.8 AVERAGE ESA PER VEHICLE FROM SURVEY FOR CATEGORIES USED IN ECONOMIC EVALUATION

Vehicle Category	Average ESA per vehicle
Bus	0.80
Medium truck	0.55
Heavy Truck	0.09
Articulated Truck*	2.12

^{*} Using weighted average for 4 and 5 axle

5 **FUTURE TRAFFIC FORECASTS**

5.1 FORECAST SCENARIOS

Because of the severe economic changes in the region, the historic data is not a good indicator of growth trends. Therefore, forecast scenarios have been developed, taking account of growth rates proposed in previous studies and providing a range within which it could be reasonably expected that future traffic could lie. Low, Medium and High growth rate scenarios have been used with different rates used for light, mainly people carrying vehicles and medium to heavy trucks used by freight.

It has been assumed that the cars, utility vehicles and buses will grow at a slower rate than the medium, heavy and articulated trucks for the period 1997 to 2002 inclusive. Thereafter, with the Low Growth scenario, it has been assumed that the same growth rates will continue to apply throughout the rest of the forecast period of 2003 to 2014. With the Medium and High Growth scenarios, it has been assumed that the light vehicles will grow at a slightly lower rate for the first five years than the next twelve years. However, for the medium, heavy and articulated trucks it has been assumed that they will grow at a slightly higher rate in the first five years than the next twelve years. This is to reflect the reality that economic growth will first be seen by growth in freight traffic before its impact is seen in increased personal travel. The resulting growth rates for each scenario are shown in Table 5.1

Table 5.1 FORECAST GROWTH RATE SCENARIOS

		Annua	l Growth rate	es, percent per	annum	
_	Cars	Utility	Buses		Trucks >2t	;
Scenario				Medium	Heavy	Articulated
Low Growth						
1997 to 2002	4.0%	4.0%	4.0%	5.0%	5.0%	5.0%
2002 to 2014	4.0%	4.0%	4.0%	5.0%	5.0%	5.0%
Medium Growth						
1997 to 2002	5.0%	5.0%	5.0%	7.0%	7.0%	7.0%
2002 to 2014	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%
High Growth						
1997 to 2002	6.0%	6.0%	6.0%	8.0%	8.0%	8.0%
2002 to 2014	7.0%	7.0%	7.0%	7.0%	7.0%	7.0%

The results of the axle load survey and comparison with other values quoted in previous studies as well as experience in other countries indicates that an increase in average values by vehicle type could be expected. In particular, the value for 3 axle trucks from the survey seems to be very low, reflecting a very high percentage of empties, probably because the survey was carried out during the winter. An allowance for this has therefore been made by assuming a growth in the average values over the five year period between 1997 and 2002. The levels assumed for 2002 are broadly consistent with other surveys and international experience. The resulting values for the average ESA per vehicle for each of the years between 1997 and 2002 are shown in Table 5.2. These increases in ESA values have only been applied to the Medium and High Growth scenarios and for comparative purposes two Medium Growth scenarios have been developed, one with increased ESA per vehicle and one without.

Table 5.2 FORECAST INCREASES IN ESA/VEHICLE 1998 TO 2002

		Average		Future Ave	rage ESA Pe	r Vehicle	
		ESA/vehicle 1997	1998	1999	2000	2001	2002
Eastbound: Te	djen to Mary	,					
Bus		0.80	0.80	0.80	0.80	0.80	0.80
Medium	Truck	0.55	0.64	0.73	0.82	0.91	1.00
Heavy	Truck	0.09	0.42	0.76	1.09	1.42	1.75
Articulated 7	Fruck*	2.12	2.25	2.37	2.50	2.62	2.75

^{*} weighted average of 4 and 5 axle trucks

Source: Consultants

5.2 FUTURE TRAFFIC

Using the assumptions and scenarios described in 5.1, forecasts have been made of future traffic and the resulting cumulative number of equivalent axle loads on each of the sections, Mary to Haus Khan, Haus Khan to Junction to Seraks near Tedjen and Junction to Seraks near Tedjen to Tedjen. A two year construction period has been assumed with an opening in 2000. Thereafter, a 15 year analysis period has been used. Because the economic evaluation model used, HDM-Manager, is limited in the number of variables that can be used, weighted values of the growth rates and average ESA per vehicle have been calculated from the more detailed values derived in the four scenarios. Table 5.3 shows these weighted values. The detailed forecasts are shown in Tables B.1.1 to B.4.3 in Appendix B. Summaries of the forecast AADT and the one way cumulative ESA are shown in Tables 5.4, 5.5 and 5.6.

The forecast AADT indicate that even with the High Growth scenario, it is unlikely that there will be a need to increase the capacity before 2014 as the level of service for a two lane road will still only be Level C, using the same method as the TICA consultants.

Tedjen to Mary Road Traffic and Economic Evaluation Report

WEIGHTED AVERAGE GROWTH RATES AND ESA PER VEHICLE

Table 5.3

		Cars	Utility	Buses		Trucks >2t	
Scenario	Factor		etc.	.	Medium	Heavy	Articulated
Low Growth Rate	Weighted Average Growth Rate	4.55%	4.55%	4.55%	2.69%	2.69%	5.69%
	Weighted Average ESA/Vehicle			08.0	0.55	0.00	2.12
Medium Growth Rate	Weighted Average Growth Rate	5.70%	5.70%	5.70%	6.29%	6.29%	6.29%
	Weighted Average ESA/Vehicle			0.80	0.55	0.00	2.12
Medium Growth Rate	Weighted Average Growth Rate	5.70%	5.70%	5.70%	6.29%	6.29%	6.29%
Increased ESA/ venicle	Weighted Average ESA/Vehicle			0.80	0.99	1.71	2.73
High Growth Rate	Weighted Average Growth Rate	6.70%	6.70%	6.70%	7.00%	7.00%	7.00%
Increased ESA/Venicle	Weighted Average ESA/Vehicle			08.0	0.99	1.71	2.73
-1							

Tedjen to Mary Road Traffic and Economic Evaluation Report COMPARISON OF ALTERNATIVE FORECASTS OF FUTURE AADT AND ONE WAY CUMULATIVE ESA

SECTION: MARY TO HAUS KHAN

Table 5.4

Vehicles/day
2448
2587
2733
2897
3071
3255
3451
3658
3877
4110
4357
4618
4895
5189
5500

Tedjen to Mary Road Traffic and Economic Evaluation Report

COMPARISON OF ALTERNATIVE FORECASTS OF FUTURE AADT AND ONE WAY CUMULATIVE ESA Table 5.5

SECTION: HAUS KHAN TO JUNCTION TO SERAKS NEAR TEDJEN

	Scena	Scenario 1	Scenario 2	rrio 2	Scens	Scenario 3	Scenario 4	rio 4
	Low G	Low Growth	Medium Growth	Growth	Medium	Medium Growth	High Growth	rowth
Year					Increased I	Increased ESA/vehicle	Increased E	Increased ESA/vehicle
	AADT	Cumulative	AADT	Cumulative	AADT	Cumulative	AADT	Cumulative
	Vehicles/day	One Way	Vehicles/day	One Way	Vehicles/day	One Way	Vehicles/day	One Way
		Million ESA		Million ESA		Million ESA		Million ESA
1997	1548		1548		1548		1548	
2000	1755	0.08	1822	0.09	1822	0.13	1858	0.13
2001	1831	0.17	1924	0.18	1924	0.29	1975	0.29
2002	1910	0.26	2032	0.28	2032	0.47	2100	0.48
2003	1992	0.36	2153	0.39	2153	0.67	2247	0.67
2004	2077	0.46	2283	0.50	2283	0.88	2404	0.89
2005	2167	0.57	2420	0.62	2420	1.10	2572	1.11
2006	2260	89.0	2565	0.75	2565	1.33	2752	1.36
2007	2357	0.79	2719	0.88	2719	1.58	2945	1.62
2008	2459	0.91	2882	1.02	2882	1.84	3151	1.90
2009	2565	1.04	3055	1.17	3055	2.12	3372	2.19
2010	2675	1.18	3238	1.33	3238	2.42	3608	2.51
2011	2791	1.32	3432	1.50	3432	2.73	3860	2.85
2012	2911	1.46	3638	1.68	3638	3.06	4131	3.22
2013	3037	1.62	3857	1.87	3857	3.41	4420	3.61
2014	3168	1.78	4088	2.07	4088	3.78	4729	4.03

Tedjen to Mary Road Traffic and Economic Evaluation Report

COMPARISON OF ALTERNATIVE FORECASTS OF FUTURE AADT AND ONE WAY CUMULATIVE ESA SECTION: JUNCTION TO SERAKS NEAR TEDJEN TO TEDJEN Table 5.6

	Scen	Scenario 1	Scenario 2	rio 2	Scenario 3	rrio 3	Scenario 4	irio 4
	Low C	Low Growth	Medium Growth	Growth	Medium Growth	Growth	High C	High Growth
Year					Increased F	Increased ESA/vehicle	Increased I	Increased ESA/vehicle
	AADT	Cumulative	AADT	Cumulative		Cumulative	AADT	Cumulative
	Vehicles/day	One Way	Vehicles/day	One Way	Vehicles/day	One Way	Vehicles/day	One Way
		Million ESA		Million ESA		Million ESA		Million ESA
1997	3088		3088		3088		3088	
2000	3501	0.15	3633	0.15	3633	0.24	3707	0.24
2001	3652	0.30	3835	0.32	3835	0.52	3940	0.52
2002	3808	0.46	4050	0.50	4050	98.0	4188	0.86
2003	3971	0.63	4293	89.0	4293	1.21	4481	1.22
2004	4142	0.81	4550	0.88	4550	1.59	4794	1.60
2005	4320	0.99	4823	1.09	4823	1.99	5130	2.02
2006	4505	1.19	5113	1.31	5113	2.41	5489	2.46
2007	4699	1.39	5420	1.55	5420	2.86	5873	2.93
2008	4901	1.61	5745	1.80	5745	3.34	6284	3.43
2009	5112	1.83	6809	2.06	6809	3.84	6724	3.97
2010	5332	2.07	6455	2.34	6455	4.37	7195	4.55
2011	5561	2.32	6842	2.64	6842	4.94	6692	5.17
2012	5801	2.58	7253	2.96	7253	5.54	8238	5.83
2013	6051	2.85	7688	3.29	288	6.18	8814	6.54
2014	6312	3.13	8149	3.65	8149	6.85	9431	7.29

>

5.3 LOADINGS FOR PAVEMENT DESIGN

The traffic surveys show that there is a decrease in traffic volumes on the middle section near Haus Khan. This is caused particularly by heavy trucks turning off to take the road to Seraks. Close to Tedjen, on the section between Tedjen and the turning to Seraks, there is an increase in traffic, mainly because of the influence of the nearby villages that are linked to Tedjen.

The pavement loadings are directly proportional to the values used for the average ESA per vehicle, hence the scenarios that assume an increase in average ESA values show a significant increase in cumulative pavement loadings. These are shown in Figures 5.1, 5.2 and 5.3 for the three sections respectively, showing that there is little difference between the medium and high growth scenarios assuming the increase in average ESA per vehicle.

Overall, there is little difference in pavement loadings between the two end sections but the cumulative ESA for the middle section are nearly half that on the other two sections. However, it would not be prudent to design this section on the lower values as these are based on the assumption that the border crossing at Seraks will remain the preferred route for international transit traffic and more importantly that the road will remain open to traffic. This is a crucial assumption as it is understood that this road is in a poorer condition than the road that comes to the junction near Tedjen.

As there is little difference in the cumulative ESA between the medium and high growth scenarios, the pavement design should be based on a one way cumulative total of 6 million ESA over the fifteen year period 2000 to 2014.

Figure 5.1 Forecast One Way Cumulative Equivalent Standard Axles

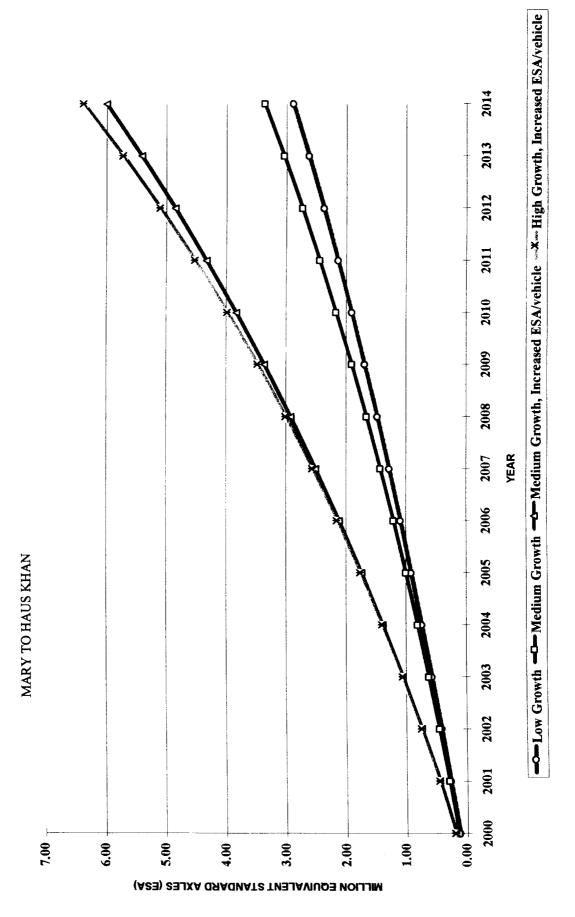
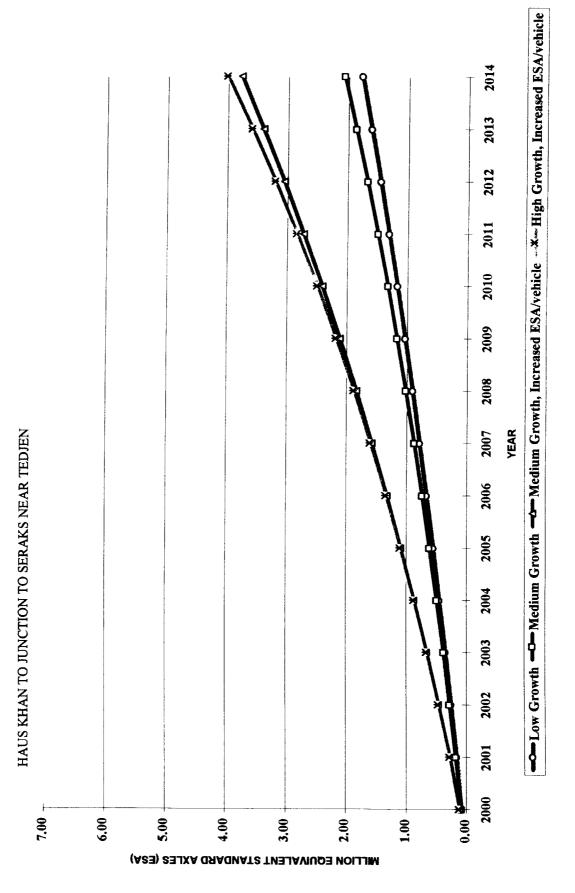
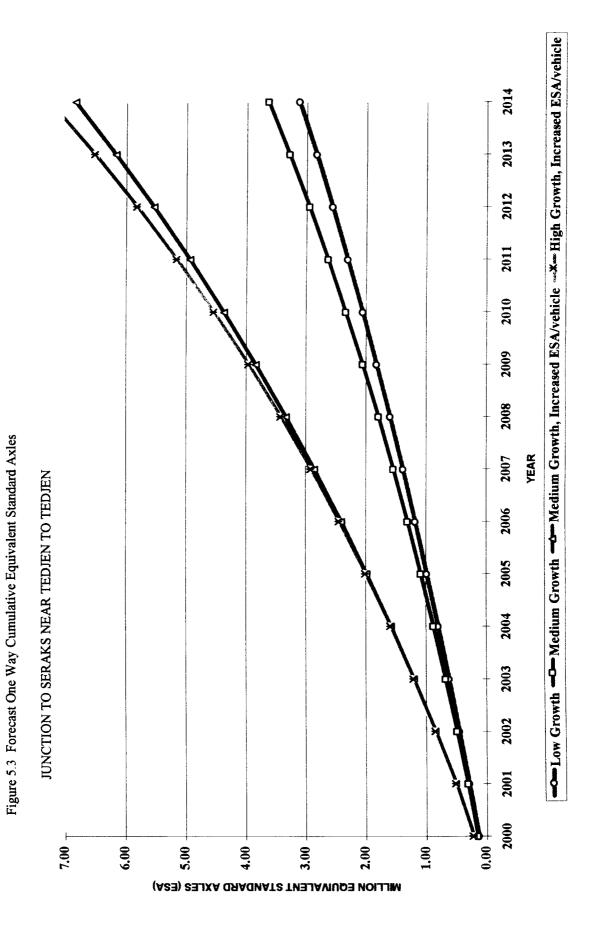




Figure 5.2 Forecast One Way Cumulative Equivalent Standard Axles

Traffic and Economic Evaluation Report

Service Servic

6 **PROJECT DEFINITION**

6.1 EXISTING ROAD

The existing road between Tedjen and Mary has been surveyed and its condition recorded, see engineering report. From this it can be seen that a considerable proportion is in a poor state, with a fairly high level of roughness. The road can be divided into the three traffic sections referred to in the earlier chapters, which result from the two links to the Iranian border at Seraks, causing the section in between to carry less traffic, particularly heavy goods vehicles. There is little road side friction as any developments are usually set well back and the road by passes Haus Khan.

From the surveys, the road is not very homogeneous, making it difficult for both the definition of the existing condition and future proposals for treatment. A fuller description of the roughness and structural numbers are given in the engineering report. For the purposes of the economic evaluation, the data has been processed for the sections identified for overlay and reconstruction and are shown in Table C.1 in Appendix C.

6.2 **DEFINITION OF PROJECT**

From the analysis of the survey data, sections were identified either for overlay or for reconstruction. These are shown in Table C.1 in Appendix C, which also includes details of the recommended thickness of overlay and identifies short sections for realignment. Because the lengths of road for overlay and reconstruction were not continuous sections, for the economic analysis, the sections were grouped into combined lengths for overlay sections, numbered 1A, 2A and 3A and reconstruction sections, numbered 1B, 2B and 3B for each of the three traffic links respectively.

The weighted values for roughness and the modified structural number have been calculated from the detailed data in Table C.1 for each of the summary lengths and are shown in Table 6.1. Also shown are the weighted values of the projected modified structural numbers following the rehabilitation.

Table 6.1 WEIGHTED VALUES OF ROUGHNESS AND MODIFIED STRUCTURAL NUMBERS

	Section 1A	Section 1B	Section 2A	Section 2B	Section 3A	Section 3B
Between chainages	0+000 t	o 9+862	9+862 to	73+490	73+490 to	142+527
Average roughness	4.31	6.28	4.90	5.35	6.59	6.96
Average SN (existing)	2.84	3.79	2.28	1.94	2.52	2.22
Average SN (future)	3.47	6.82	3.01	6.82	3.29	6.82

Because of the fairly poor quality of material used in the past, the sections selected for overlay treatment initially were assumed to require further overlay in 2007. Apart from this, resealing, patching and routine maintenance operations were assumed to continue in response to deterioration of the pavement under the traffic loading. The detailed maintenance strategy and the maintenance policies associated with it for the "with project" case are described in the input data for the HDM model in Appendix D.

6.3 **DEFINITION OF "WITHOUT PROJECT" SCENARIO**

A realistic "without" project scenario has to be defined as the base case against which any rehabilitation is to be tested. Despite a shortage of funds, Turkmenautoellari appear to have carried out routine maintenance and patching, probably due to the importance of the road. It was assumed therefore that a minimum maintenance effort would continue until the road had deteriorated to such an extent that it would be impossible to continue to patch and only a full reconstruction would be feasible. Because the reality is that the sections vary considerably, the use of a weighted average as the basis for determining when a full reconstruction could no longer be delayed would lead to apparent differences in the year for intervention for the different summary sections. It was assumed therefore that the reconstruction would be fixed by schedule and would take place in 2007, by which time long sections would be in a very poor state with very high levels of roughness. The detailed maintenance strategy and the maintenance policies associated with it for the "do minimum" case are described in the input data for the HDM model in Appendix D.

7 **ECONOMIC EVALUATION**

7.1 INTRODUCTION

The economic evaluation model that was used was HDM Manager, an updated variant of the HDM-III model. The model was used to produce outputs for the two strategies - do minimum and the overlay/reconstruction project. Separate runs were made for each of the six sections and then the resulting cost streams were added to give the overall total for the complete road. The two sets of cost streams were then compared to give the benefits of the project from which the Net Present Value, NPV and the Economic Internal Rate of Return were calculated. Appendix D contains a print out of all the input data that was used in running HDM Manager and Appendices E and F give the output cost streams for the "do minimum" and "with project" cases respectively.

7.2 CONSTRUCTION AND MAINTENANCE COSTS

The detailed economic construction costs from the engineering report were used to produce estimations of construction costs in the "With Project" case for each of the summary sections based on the definition of the amount of work described in Appendix C. The general, drainage, signalisation, dayworks, provisional and contingencies costs were calculated "pro rata" to the lengths of each section. Table 7.1 shows the detailed costs for each of the six sections in the "With Project" case. Tables E.1 and F.1 in Appendices E and F show the cost streams for the two strategies.

Table 7.1 CONSTRUCTION COSTS BY SECTION AND TOTAL

Item	Section	Section	Section	Section	Section	Section	Total
110111	1A	1B	2A	2B	3A	3B	
Length (m)	1,900	7,962	14,480	49,148	14,277	54,760	142,527
General	39,992	167,589	304,784	1,034,499	300,511	1,152,624	3,000,000
40 mm Overlay	225,399		1,106,806		1,170,222		2,502,426
75 mm Overlay	0		422,207	1	423,240		845,447
120 mm Overlay	o		0		106,812		106,812
Reconstruction		2,189,526		15,323,538		17,226,790	34,739,855
New Road		618,590		270,401		0	888,991
Drainage	433	1,813	3,297	11,191	3,251	12,469	32,453
Signalisation	4,425	18,541	33,720	114,452	33,247	127,521	331,906
Dayworks	4,239	17,762	32,302	109,640	31,849	122,160	317,953
Provisional Sum	2,933	12,290	22,351	75,863	22,038	84,526	220,000
Sub Total	277,420	3,026,111	1,925,467	16,939,585	2,091,170	18,726,089	42,985,842
Contingencies 5%	13,871	151,306	96,273	846,979	104,558	936,304	2,149,292
Total (ex taxes)	291,290	3,177,417	2,021,741	17,786,564	2,195,728	19,662,393	45,135,134

It was assumed that the reconstruction and overlays would be carried out over a two year period - 1998/99. It was also assumed that with the "do minimum" case, reconstruction would be required in 2007. The economic costs for other maintenance activities such as patching and resealing were based on estimates of the costs currently incurred by Turkmenautoellari and are shown in Table 7.2. The cost streams for the two strategies are shown in Tables E.2 and F.2 in Appendices E and F.

Table 7.2 MAINTENANCE COSTS

Item	Unit	Rate (US \$)
Patching	square metre	23.00
Resealing	square metre	1.25
Routine annual	kilometre	1,100

Source: Consultants

7.3 VEHICLE OPERATING COSTS

The data for the calculation of vehicle operating costs, VOC, were taken from the work prepared by Carl Bro International, CBI, for the section Ashgabat to Tedjen to allow a consistent economic evaluation to be made between the two lengths of road. The input data used is shown in Appendix D which covers all the input data for the HDM model. A summary description of the representative vehicle in each category is shown in Table 7.3. The resulting streams of vehicle operating costs are shown in Tables E.3 and F.3 in Appendices E and F for the two strategies.

Table 7.3 REPRESENTATIVE VEHICLES FOR ECONOMIC ANALYSIS

Туре	Make and Model	1	Average Passenger Carried	Payload Capacity tonnes	Axles	Wheels	Cost US \$
Small Car	Lada 2107	5	3	-	2	4	7,000
Utility	Raf 2203	11	5	-	2	4	10,000
Large Bus	Ikarus 256	41	32	-	2	6	46,500
Medium Truck	Zil 130-80	-	_	6	2	6	20,000
Heavy Truck	Kamaz 5320	_	-	8	3	10	42,000
Articulated Truck	Mercedes 16335	<u> </u>	-	20	5	18	90,000

Source: Carl Bro International

7.4 **OTHER BENEFITS**

7.4.1 Travel Time Costs

It is readily accepted that travel time cost savings will result from improvements to the quality of the road surface because of higher vehicle speeds. Although it is relatively easy to predict the increases in vehicle speeds and hence the amount of time that would be saved, it is often difficult to quantify the value of this time. In the CBI study of the road from Ashgabat to Tedjen, a value of US \$0.18 per hour was used and this value was adopted for this study for the sake of consistency. The resulting streams of travel time costs are shown in Tables E.4 and F.4 in Appendices E and F for the two strategies being compared.

7.4.2 Accident Savings

There are no specific data available for accident statistics on the road making it difficult to estimate the likely impact from the project. Alignments are generally very good and will not be affected by the project. Improvements to the camber and roughness would have a positive effect but this could be off set by higher speeds. It was assumed therefore, that the impact of the road project on road safety would be neutral.

7.5 **ECONOMIC ANALYSIS**

The two sets of cost streams shown in Appendices E and F were compared to produce a stream of benefits resulting from the project case. Table 7.4 shows the separate benefit streams for capital costs, recurrent maintenance costs, VOC and travel time costs. From the total net benefit stream, the Net Present Value, NPV, at a discount rate of 15 per cent and the Economic Internal Rate of Return, EIRR, have been calculated. These show that the project achieves an EIRR of 19.4 per cent, making it a viable project on the basis of the base case assumptions.

Table 7.4 TIME STREAMS OF ECONOMIC BENEFITS

	Net B	enefits (millions U	J S \$)	
Capital	Maintenance	Vehicle	Travel	Total
Costs	Costs	Operating	Time	
		Costs	Costs	
	i i	į	i	-22.568
l .	1	Į.		-22.568
l .	0.004	5.128	0.095	5.227
0.000	0.011	6.294	0.128	6.433
0.000	0.017	7.826	0.177	8.020
0.000	0.023	9.803	0.238	10.064
0.000	0.028	12.320	0.323	12.671
0.000	0.034	14.669	0.403	15.106
0.000	0.038	16.220	0.453	16.711
52.154	0.000	17.317	0.487	69.958
0.000	0.000	-0.932	-0.009	-0.941
0.000	0.000	-0.976	-0.010	-0.986
0.000	0.000	-1.111	-0.012	-1.123
-0.552	-0.008	-1.316	-0.014	-1.890
-0.617	0.000	-1.660	-0.016	-2.293
-0.090	-0.001	-2.024	-0.019	-2.134
0.000	0.000	-2.379	-0.023	-2.402
			NPV @ 15%	8.94
			(millions US \$)	
			IRR	19.4%
	-22.568 -22.568 0.000 0.000 0.000 0.000 0.000 0.000 52.154 0.000 0.000 0.000 -0.552 -0.617 -0.090	Capital Costs Maintenance Costs -22.568 -22.568 0.000 0.000 0.000 0.000 0.011 0.000 0.017 0.000 0.023 0.000 0.023 0.000 0.028 0.000 0.034 0.000 0.038 52.154 0.0000 0.000	Capital Costs Maintenance Costs Vehicle Operating Costs -22.568 0.000 0.000 -22.568 0.000 0.000 0.000 0.004 5.128 0.000 0.011 6.294 0.000 0.017 7.826 0.000 0.023 9.803 0.000 0.028 12.320 0.000 0.034 14.669 0.000 0.038 16.220 52.154 0.000 17.317 0.000 0.000 -0.932 0.000 0.000 -0.976 0.000 0.000 -1.111 -0.552 -0.008 -1.316 -0.617 0.000 -1.660 -0.090 -0.001 -2.024	Costs Operating Costs Time Costs -22.568 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 6.294 0.128 0.000 0.017 7.826 0.177 0.000 0.023 9.803 0.238 0.000 0.034 14.669 0.403 0.000 0.038 16.220 0.453 52.154 0.000 17.317 0.487 0.000 0.000 -0.932 -0.009 0.000 0.000 -0.976 -0.010 -0.552 -0.008 -1.316 -0.014 -0.617 0.000 -1.660 -0.014 -0.090 -0.001 -2.024 -0.019 0.000 0.000 -2.379 -0.023

7.6 SENSITIVITY ANALYSIS

Because the economic evaluation is potentially susceptible to the initial assumptions made, sensitivity tests were carried out assuming plus and minus twenty percent on construction and maintenance costs and plus and minus twenty percent on traffic VOC and travel time savings. The results of these on the NPV at 15 percent and the EIRR are shown in Table 7.5. From this it can be seen that the anticipated range of value for the EIRR would be between 16.2 and 23.1 percent.

Table 7.5 SENSITIVITY TESTS OF EIRR AND NPV AT 15 PERCENT

Case	Economic Internal Rate of Return	Net Present Value at 15 % (millions US \$)
Base	19.4%	8.94
Costs + 20%	16.7%	4.16
Costs - 20%	23.1%	13.72
Traffic + 20%	22.4%	15.51
Traffic - 20%	16.2%	2.37

8 <u>CONCLUSIONS</u>

The traffic studies have shown that the existing level of traffic is lower than had been previously supposed. However, the estimated ADT of between 1550 and 3000 vehicles per day on the three sections are broadly in line with those estimated by Carl Bro International for the sections between Ashgabat and Tedjen. At these levels of traffic and assuming realistic growth rates, there would be no capacity problems before the design year, 2014.

The axle load surveys would seem to indicate fairly low average values of ESA per vehicle and it was assumed that these could increase with time. A range of growth rates and increases to average ESA values were considered resulting in a proposed one way cumulative total ESA of approximately 6 million which was used for the pavement design.

The economic evaluation was carried out using HDM Manager and showed that a mixture of overlay and reconstruction, costing an estimated total of US \$ 45,135,134 at economic costs, would be viable with an EIRR of 19.4 percent. Sensitivity tests showed that the EIRR could vary between 16.2 and 23.1 percent.

APPENDIX A

1997 CLASSIFIED TRAFFIC COUNTS

Table A.1 TEDJEN TO MARY ROAD - CLASSIFIED TRAFFIC COUNT

		TOTAL	2	14	+1	\ \ \	7 1	101	77	77	67	107	101	7,6	S	50	47	42	45	49	51	75	75	55	31	28	14	407	780	410	1032
	TOTAL	LIGHT VEHICLES	7	, ,	, (7	11 0	10	141	37	34	74	7.5	38	27	37	30	87	31	35	37	58	62	37	24	21	10	404	201	315	730
	TOTAL	TRUCKS	-	6	1		, 19	0	~	~	7 4	33	40	25	91	2 0	7	*	41	14	14	17	13	18	7	7	4	193	×	104	302
ljen	OTHER		٥	0	,	0	0	0	0				c)	, "	3	-	7 0	٥	٥	0	-	2	0	0	-	0	9	5	4	10
Mary to Tedjen		6 - axle	0	0	0		0	0	0	C	0	0	C	0	C	٥			5 6	O	0	0	0	0	0 .	0	0	0	0	0	0
z		5 - axle	0	3		0	0	0	0	2	4	Ξ	8	6	4	,	4	1 0	7 -	7		2	2	4	3	3		46	14	24	71
DIRECTION	TRUCK >2t	4 - axle	0	0	1	0	0	0	0	-	0	0	0	0	-		0	٥			2	2	-	0	0	0	0	4	4	8	12
		3 - axle	2	-	-		3	0	-	0	4	5	5	2	5		0	3 9	0 1	, ,		7	2	4	3	2	1	42	79	23	99
Mary Km7		2 - axle	1	3	2	0	3	0	7	5	9	17	27	14	9	5	2	9	٩		4 ,	2	×	9	-	2	2	101	37	46	152
7	UTILITY	<2t	0	0	0	0	0	0	0	0	2	0	0	0	1	0	0	0	0	7	-	0	0	2	0	=	0	4	2	8	13
LOCATION	BUS		0	1	0	0	0	1	1	7	5	9	4	2	2	4	-	3	9	0 0	7	0 0	5	7	E		-	35	18	25	62
	CAR		7	9	2	5	11	18	12	28	24	57	42	30	26	24	23	27	29	30	00	70	449	32	20	18	6	312	159	269	589
11,12/02/1997	AGRI	TRACTOR	0	0	0	,	0	0	1	2	3	10	11	9	2	4	3	-	0	A	+ 0	0 6	2		- (Э	0	47	17	6	57
DATE	TIME	PERIOD	00:00 to 01:00	01:00 to 02:00	02:00 to 03:00	03:00 to 04:00	04:00 to 05:00	05:00 to 06:00	06:00 to 07:00	07:00 to 08:00	*00:60 ot 00:80	09:00 to 10:00	10:00 to 11:00	11:00 to 12:00	12:00 to 13:00	13:00 to 14:00	14:00 to 15:00	15:00 to 16:00	16:00 to 17:00	17:00 to 18:00	18:00 to 10:00	10:00 to 19:00	19:00:10 20:00	20:00 to 21:00	21:00 to 22:00	22:00 to 23:00	23:00 to 00:00	08:00 to 18:00	12:00 to 18:00	18:00 to 08:00	TOTAL 24 hr* 57

* Total adjusted as count started at 08.15

Table A.2 TEDJEN TO MARY ROAD - CLASSIFIED TRAFFIC COUNT

	_		1		1."	L.	1	1	-		17.5	1.	_	_	1	1 =	,	1	T.=	T		1.	12.	1		Te.	1	T	_	_
		TOTAL	<u>=</u>	13	15	10	4	13	10	88		32									84		62		23		4	313	511	971
	TOTAL	LIGHT VEHICLES	13	6	6	5	4	8	10	71	10	22	32	33	33	25	31	42	53	54	19	85	42	35	13	17	335	238	382	720
	TOTAL	TRUCKS	S	4	9	5	0	5	0	17	9	01	11	18	9	5	01	16	17	21	23	22	20	6	2	3	120	75	129	251
fary	OTHER		0	0	0	0	0	0	3	2	0	0	-	0	-	0	0		0	0	1	1	0	0	0	0	3	2	7	10
Tedjen to Mary		6 - axle	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 .	0	0	0	0	0	0
z		5 - axle	2	0	2	2	0	1	0	0	3	1	2	8	0	0	2	1	0	5	4	9	1	2	1	1	22	8	22	45
DIRECTION	TRUCK >2t	4 - axle	0	1	1	0	0	0	0	0	0	1	2	2	2	1	0	0	1	3	9	2	0	0	2	0	12	7	12	24
		3 - axle	2	1	1	0	0	4	0	4	1	1	1	0	1	0	2	-	9	5	1	4	=	2		0	18	15	31	49
Mary Km7		2 - axle	1	2	2	3	0	0	0	13	2	7	9	8	3	4	9	14	10	∞	12	10	8	5	9	2	89	45	64	133
7	UTILITY	<2t	1	0	0	0	0	0	0	1	1	-	2	0	0	1	2			4	8	4	3	0	0	0	13	6	17	30
LOCATION	BUS		0	2	3	0	0	0	2	9	0	3	1	4	2	2	5	3	6	2	0	3	3	4	0	-	31	23	24	55
7	CAR		12	5	9	3		∞	2	62	6		28	25	25	20	21	31	32	44	47	72	33	29	12	16	253	173	311	567
11,12/02/1997	AGRI	TRACTOR	0	2	0	2	3	0	0	0	0	0	0	4	5	2	3	9	11	4	5	5	3	2	1	0	35	31	23	58
DATE	TIME	PERIOD	00:00 to 01:00	01:00 to 02:00	02:00 to 03:00	03:00 to 04:00	04:00 to 05:00	05:00 to 06:00	06:00 to 07:00	07:00 to 08:00	08:00 to 09:00*	09:00 to 10:00	10:00 to 11:00	11:00 to 12:00	12:00 to 13:00	13:00 to 14:00	14:00 to 15:00	15:00 to 16:00	16:00 to 17:00	17:00 to 18:00	18:00 to 19:00	19:00 to 20:00	20:00 to 21:00	21:00 to 22:00	22:00 to 23:00	23:00 to 00:00	08:00 to 18:00	12:00 to 18:00	18:00 to 08:00	TOTAL 24 hr*

* Total adjusted as count started at 08.15

Tedjen to Mary Road Traffic and Economic Evaluation Report

Table A.3 TEDIEN TO MARY ROAD - CLASSIFIED TRAFFIC COUNT

Two way total

DIRECTION

Mary Km7

LOCATION

11,12/02/1997

DATE

	TOTAL			77	77		32				139			92		83			126		182		75	51		1067	595	930	
TOTAL	LIGHT VEHICLES	00	207	2 -		11	77	24	108	55	96	89	71	70	58	59	73	88	91	119	147	79	59	34	27	750	439	697	
TOTAL	TRUCKS	×	2 -	= =	11	2	2 4	000	25	24	43	51	43	22	14	24	30	31	35	40	35	38	16	17	7	317	156	233	
OTHER		C				0	0	3	2	0		-	0	4	-		-	0	0	2	3	0	0	-	0	6	7	=	Ī
	6 - axle	С			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	5 - axle	2	3	7	2	10		0	2	6	12	10	17	4	2	Q	3		9	6	8	5	. 2	4	2	07	22	46	
I KUCK >2t	4 - axle	0	-	2	0	0	0	0	-	0		2	2	3	2	0	0	1	5	11	3	0	0	2	0	91	11	20	100
	3 - axle	4	2	2	-	3	4	-	4	9	9	9	2	9	1	2	7	13	12	3	9	15	5	3	1	19	41	54	1211
	2 - axle	2	5	4	3	3	0	7	18	6	24	33	22	6	6	91	20	16	12	17	18	18	9	8	4	170	82	113	200
	₹	-	0	0	0	0	0	0	1	3	-	2	0	-	-	2	1	-	S	8	6	5	0		0	17	11	25	۲,
2		0	3	3	0	0	1	3	13	9	6	S	9	4	9	9	9	15	4	2	9	5	7		2	19	41	49	711
		61		8	8	12	26	17	06	43	75	92	55	51	44	44	28	19	74	66	121	65	49	30	25	575	332	280	1166
ACK	TRACTOR	0	2	0	3	3	0		2	3	10	11	10	10	9	9	7	11	8	5	8	4	3	1	0	82	48	32	1117
1 IIVIE	PERIOD	00:00 to 01:00	01:00 to 02:00	02:00 to 03:00	03:00 to 04:00	04:00 to 05:00	05:00 to 06:00	06:00 to 07:00	07:00 to 08:00	08:00 to 09:00*	09:00 to 10:00	10:00 to 11:00	11:00 to 12:00	12:00 to 13:00	13:00 to 14:00	14:00 to 15:00	15:00 to 16:00	16:00 to 17:00	17:00 to 18:00	18:00 to 19:00	19:00 to 20:00	20:00 to 21:00	21:00 to 22:00	22:00 to 23:00	23:00 to 00:00	08:00 to 18:00	12:00 to 18:00	18:00 to 08:00	TOTAL SALL

* Total adjusted as count started at 08.15

Tedjen to Mary Road Traffic and Economic Evaluation Report

Table A.4 TEDJEN TO MARY ROAD - CLASSIFIED TRAFFIC COUNT

Mary to Tedjen

DIRECTION

Mary Km7

LOCATION

12/02/97

	TOTAL									0.5	20	00	6	20	10	74	70	44	200	31						570	286	479	666
TOTAL	LIGHT	VERICLES								43	6 9	85	30	30	34	42	35	000	30	77	1					400	204	330	739
TOTAL	TRUCKS									191	14	2,6	200	150	17 0	5		101	O F	1						191	82	8	260
OTHER										-	1	1-	,	-	10	1	7=	1	1 0							=	9	7	18
	6 - axle									0				10	s e		0	, -	٥							0	0	0	0
	5 - axle									8	4	2	2	6	0	5	7	9	,	1						43	24	24	29
TRUCK >2t	4 - axle									-	0	-	0	-	0	0	-	4	-	1						6	7	18	27
T	3 - axle									4	4	9	3	4	F	0	3	3	3							31	14	18	49
	2 - axle									3	∞	18	12	7	7	6	∞	5								78	37	39	117
UTILITY	77											0	0	1	0	-	-	2	0							7	5	15	22
BUS										3	7	9	3	1	3	3	2	4	0							32	13	24	99
CAR										33	44	39	59	23	27	35	26	27	24		=					307	162	272	579
AGRI	TRACTOR									5	111	12	9	4	2	4	5	3	0							52	18	11	63
TIME	PERIOD	00:00 to 01:00	01:00 to 02:00	02:00 to 03:00	03:00 to 04:00	04:00 to 05:00	05:00 to 06:00	06:00 to 07:00	07:00 to 08:00	08:00 to 09:00	09:00 to 10:00	10:00 to 11:00	11:00 to 12:00	12:00 to 13:00	13:00 to 14:00	14:00 to 15:00	15:00 to 16:00	16:00 to 17:00	17:00 to 18:00	18:00 to 19:00	19:00 to 20:00	20:00 to 21:00	21:00 to 22:00	22:00 to 23:00	23:00 to 00:00	08:00 to 18:00	11:00 to 17:00	18:00 to 08:00 est.	TOTAL 24 hr est.

)

Tedjen to Mary Road Traffic and Economic Evaluation Report

Table A.5 TEDJEN TO MARY ROAD - CLASSIFIED TRAFFIC COUNT

12/02/97

		TOTAL									-	6	23	46	44	29	41	33	49	83	00	2						777	400	334	247	1008
	TOTAI	LIGHT	VEHICLES								1.2	CI	70	37	34	22	30	24	33	63	999	3						242	247	627	400	742
	TOTAL	· so									4	2 6	2	6	10	7	11	6	16	20	33	3						12.	20	143	C+1	267
ary	OTHER												5 6	O	-	-	0	0	-	2	2							1	, ,	7 4	0 0	23
Tedjen to Mary		6 - axle									ē		0	٥١	O	0		0	0	0	0							c	0	, c		O
		5 - axle									2			7	2	0	7	3	2	2	10							24	61	25	9	47
DIRECTION	TRUCK >2t	4 - axle									0	6	c	1 0	5 0	5	= ;	0		3	0							7	2	7	12.	7.1
-	L	3 - axle									3	3	2	1 6	4 -		1 C	7	0	3	8							28	18	49	77	7,,
Mary Km7		2 - axle									=	0	5	\$	3	3	7	+ -	2	12	15							65	54	62	127	1,20
	UTILITY	\$									0	0	-	C			5 -	- -	- (7	2							6	9	12	21	-
LOCATION	BUS	•									0	2	2	3	,	1 4	2 6	1	0 1	,	4							34	27	56	09	
I	CAR										12	17	30	28	13	200	2		\$ 5	1	48							792	175	325	587	
12/02/97	AGRI	TRACTOR									1		4	0	9			-	- 4		OI							30	77	20	50	
DATE	TIME	PERIOD	00:00 to 01:00	01:00 to 02:00	02:00 to 03:00	03:00 to 04:00	04:00 to 05:00	05:00 to 06:00	06:00 to 07:00	07:00 to 08:00	08:00 to 09:00	09:00 to 10:00	10:00 to 11:00	11:00 to 12:00	12:00 to 13:00	13:00 to 14:00	14:00 to 15:00	15:00 to 16:00	16:00 to 17:00	17.00 10 10.00	1 /:00 to 18:00	18:00 to 19:00	19:00 to 20:00	20:00 to 21:00	21:00 to 22:00	22:00 to 23:00	23:00 to 00:00	08:00 to 18:00	11:00 to 17:00	18:00 to 08:00 est.	TOTAL 24 hr est.	

Tedjen to Mary Road Traffic and Economic Evaluation Report

Table A.6 TEDJEN TO MARY ROAD - CLASSIFIED TRAFFIC COUNT

		TOTAL						T			86	103	131	104	08	83	6	86	139	130	2						1036	620	972	2008
	TOTAL	S									71	84	95	74	52	64	19	89	101	06							751	442	730	1481
	TOTAL	70									27	19	36	30	28	19	23	30	38	40							285	178	242	527
tal	OTHER											-		3	2	2	0	2	4	2							18	12	24	42
Two way total		6 - axle									0	0	0	0	0	0	0	0	0	0							0	0	0	0
		5 - axle									13	4	2	∞	6	C4	8	4	∞	12							19	43	46	116
DIRECTION	TRUCK >2t	4 - axle									I	0	3	0	-	1	0	2	7	1							16	12	25	41
_		3 - axle									6	7	8	5	5	5	2	3	9	11							59	32	19	126
Mary Km7		2 - axle									4	8	23	17	13	11	13	21	17	16							143	91	101	244
	UTILITY	∠ 2t									-	1	1	2	1	0	2	2	4	2							16	11	27	43
LOCATION	BUS										3	6	8	9	3	∞	9	∞	11	4							99	40	51	117
	CAR										65	19	69	57	36	51	54	20	74	72							695	337	298	1167
12/02/97	AGRI	TRACTOR									7	12	16	9	10	3	5	9	8	10							82	42	31	113
DATE	TIME	PERIOD	00:00 to 01:00	01:00 to 02:00	02:00 to 03:00	03:00 to 04:00	04:00 to 05:00	05:00 to 06:00	06:00 to 07:00	07:00 to 08:00	08:00 to 09:00	09:00 to 10:00	10:00 to 11:00	11:00 to 12:00	12:00 to 13:00	13:00 to 14:00	14:00 to 15:00	15:00 to 16:00	16:00 to 17:00	17:00 to 18:00	18:00 to 19:00	19:00 to 20:00	20:00 to 21:00	21:00 to 22:00	22:00 to 23:00	23:00 to 00:00	08:00 to 18:00	11:00 to 17:00	18:00 to 08:00 est.	TOTAL 24 hr est.

Tedjen to Mary Road Traffic and Economic Evaluation Report

Table A.7 TEDJEN TO MARY ROAD - CLASSIFIED TRAFFIC COUNT

Mary, two way total

DIRECTION

Tedjen/Saraks

LOCATION

11/02/97

	TOTAL													(6	3	1/	6	C 8	88							1777	104	1579
TOTAL	LIGHT	EHICLES									1			173	74	† ;	4 2	40	0+	00						1	212	213	1056
TOTAL	70		+											151	01	25	17 7	27	32	70							148		473
OTHER															7 -	- -	3 6	7=	1	1							ľ	,	6
	6 - axle													-		0		0	7								ē		0
	5 - axle													2	1 6	1	, ,	6	9				-				27		78
TRUCK >2t	4 - axle													0	0	2	4	2	-								2		26
Τ	3 - axle							-						2	4	9	3	3	13								33		103
	2 - axle													=	12	02	20	13	12								78		266
UTILITY	44													-	0	0	-	0	0								2		8
BUS														3	3	4		-	4								91		45
CAK														47	36	39	20	45	99								273		950
AGKI	TRACTOR													3	4	4	2	-	5								19		45
TIME	PERIOD	00:00 to 01:00	01:00 to 02:00	02:00 to 03:00	03:00 to 04:00	04:00 to 05:00	05:00 to 06:00	06:00 to 07:00	07:00 to 08:00	08:00 to 09:00	09:00 to 10:00	10:00 to 11:00	11:00 to 12:00	12:00 to 13:00	13:00 to 14:00	14:00 to 15:00	15:00 to 16:00	16:00 to 17:00	17:00 to 18:00	18:00 to 19:00	19:00 to 20:00	20:00 to 21:00	21:00 to 22:00	22:00 to 23:00	23:00 to 00:00	08:00 to 18:00	12:00 to 18:00	18:00 to 08:00	TOTAL 24 hr est.

Tedjen to Mary Road Traffic and Economic Evaluation Report

Table A.8 TEDJEN TO MARY ROAD - CLASSIFIED TRAFFIC COUNT

		TOTAL														136	136	140	138	140	162								852		7807
	,	LIGHT	VEHICLES													102	06	93	66	86	116								598	.000	1707
	1.4 H.O.E.	TRUCKS														34	46	47	39	42	46								254	206	λο,
way total	OTUED	OINER															3	0	0		2							ľ		0,0	
Tedjen, two way total		6 - axle													-	5 0	3 6	٥١٥	5 6	5	0						1	c	>	6	
		5 - axle									-				,	7 (7 0		9						1	27	3	78	
DIRECTION	TRUCK >2t	4 - axle							-			-			-		7 4	2 -	-	+	7							×		46	
	L	3 - axle	1												4	=	: «	~	2	12								51		159	
Tedjen/Saraks		2 - axle													27	31	28	25	22	3,5	3							158		503	
	UTILITY	4													3	0	0	-	-	C								S		19	
LOCATION	BUS														9	5	7	9	3	9								33		93	
	CAR														8	76	78	92	87	86								521		1813	
11/02/97	AGRI	TRACTOR													2	9	8	0	9	10								32		92	
DATE	TIME	PERIOD	00:00 to 01:00	01:00 to 02:00	02:00 to 03:00	03:00 to 04:00	04:00 to 05:00	05:00 to 06:00	06:00 to 07:00	07:00 to 08:00	08:00 to 09:00	09:00 to 10:00	10:00 to 11:00	11:00 to 12:00	12:00 to 13:00	13:00 to 14:00	14:00 to 15:00	15:00 to 16:00	16:00 to 17:00	17:00 to 18:00	18:00 to 19:00	19:00 to 20:00	20:00 to 21:00	21:00 to 22:00	22:00 to 23:00	23:00 to 00:00	08:00 to 18:00	12:00 to 18:00	18:00 to 08:00	TOTAL 24 hr est.	

Tedjen to Mary Road Traffic and Economic Evaluation Report

Table A.9 TEDJEN TO MARY ROAD - CLASSIFIED TRAFFIC COUNT

Saraks, two way total

DIRECTION

Tedjen/Saraks

LOCATION

11/02/97

	TOTAL													00	6 6	8	25	7.0	100	0							403		1603
TOTAL	LIGHT	VEHICLES												99	25	54	25	6	8	2							361		1205
TOTAL									1					23	27	20	× ×	212	14								132		398
OTHER															2	0	6	0	-								4		11
	6 - axle													0	0	0	0	0	0								0		0
	5 - axle													0	0	0	0	0	0								0		0
TRUCK >2t	4 - axle													-		3	0	2	-								∞		21
T	3 - axle													2	7	2	3	4	0								18		99
	2 - axle													20	61	24	15	15	13								106		321
	4													2	0	0	0	1	0								3		11
SOS	···													3	2	3	5	2	2								17		48
CAK														57	44	43	48	52	28								302		1051
AGRI	TRACTOR													3	8	8	2	5	6								35		83
TIME	PERIOD	00:00 to 01:00	01:00 to 02:00	02:00 to 03:00	03:00 to 04:00	04:00 to 05:00	05:00 to 06:00	06:00 to 07:00	07:00 to 08:00	08:00 to 09:00	09:00 to 10:00	10:00 to 11:00	11:00 to 12:00	12:00 to 13:00	13:00 to 14:00	14:00 to 15:00	15:00 to 16:00	16:00 to 17:00	17:00 to 18:00	18:00 to 19:00	19:00 to 20:00	20:00 to 21:00	21:00 to 22:00	22:00 to 23:00	23:00 to 00:00	08:00 to 18:00	12:00 to 18:00	18:00 to 08:00	TOTAL 24 hr est.

Tedjen to Mary Road Traffic and Economic Evaluation Report

Table A.10 TEDJEN TO MARY ROAD - CLASSIFIED TRAFFIC COUNT

Mary, two way total

DIRECTION

Haus Khan/Saraks

LOCATION

11/02/97

	TOTAL												8	200	6 5	7 6	0/	7 :	CII								520	000	1774
TOTAL	LIGHT VEHICI ES	LINCEES							+				73	000	200	65	05	00	Co								335	CCC	1119
TOTAL	ro												72	35	86	3 5	172	7 84	P								203	G	655
OTHER													0		0	1	10										1		3
	6 - axle																0) c	7								0		0
	5 - axle												~	~	17	4	7	10									47		127
TRUCK >2t	4 - axle												-	0	0	-	3	2									7		24
L	3 - axle												=	5	m	7	2	02									41		161
	2 - axle												17	22	12	6	22	56									108		343
	₹												-	-	-	2	-	2									8		31
RUS													9	9	2	7	5	4									30		88
CAK													43	39	37	43	47	51									260		006
ACK	TRACTOR												9	4	6	2	7	8									36		16
IME	PERIOD	00:00 to 01:00	01:00 to 02:00	02:00 to 03:00	03:00 to 04:00	04:00 to 05:00	05:00 to 06:00	06:00 to 07:00	07:00 to 08:00	08:00 to 09:00	09:00 to 10:00	10:00 to 11:00	11:00 to 12:00	12:00 to 13:00	13:00 to 14:00	14:00 to 15:00	15:00 to 16:00	16:00 to 17:00	17:00 to 18:00	18:00 to 19:00	19:00 to 20:00	20:00 to 21:00	21:00 to 22:00	22:00 to 23:00	23:00 to 00:00	08:00 to 18:00	11:00 to 17:00	18:00 to 08:00	TOTAL 24 hr est.

Table A.11 TEDJEN TO MARY ROAD - CLASSIFIED TRAFFIC COUNT

		TOTAL												63	20	50	30	70	0/	80								386		1284
	TOTAI	LIGHT VEHICI ES	· LINCELLS											45	34	2	7	41	0.5	30								283		945
	TOTAL	TRUCKS												17	=	2 2	2	2,50	3 8	07								103		339
way total	OTHER																		1									3		10
Tedjen, two way total		6 - axle												0	0	C) C	٥									0		0
Z		5 - axle												2	3	0	160	3	3									14		38
DIRECTION	TRUCK >2t	4 - axle												-	0	0		3	2									7		24
Saraks		3 - axle												5	3	2		2	5									18		71
Haus Khan/Saraks		2 - axle												6	7	∞	5	17	18									64		207
	UTILITY	77												1	-	0	-	-	2									9		24
LOCATION	BUS													3	9	1	3	9	4									23		19
	CAR													36	34	31	34	41	43		:							219		758
12/02/97	AGRI	TRACTOR							-					4	\$	8	2	4	6									32		98
DATE	TIME	PERIOD	00:00 to 01:00	01:00 to 02:00	02:00 to 03:00	03:00 to 04:00	04:00 to 05:00	05:00 to 06:00	06:00 to 07:00	07:00 to 08:00	08:00 to 09:00	09:00 to 10:00	10:00 to 11:00	11:00 to 12:00	12:00 to 13:00	13:00 to 14:00	14:00 to 15:00	15:00 to 16:00	16:00 to 17:00	17:00 to 18:00	18:00 to 19:00	19:00 to 20:00	20:00 to 21:00	21:00 to 22:00	22:00 to 23:00	23:00 to 00:00	08:00 to 18:00	11:00 to 17:00	18:00 to 08:00	TOTAL 24 hr est.

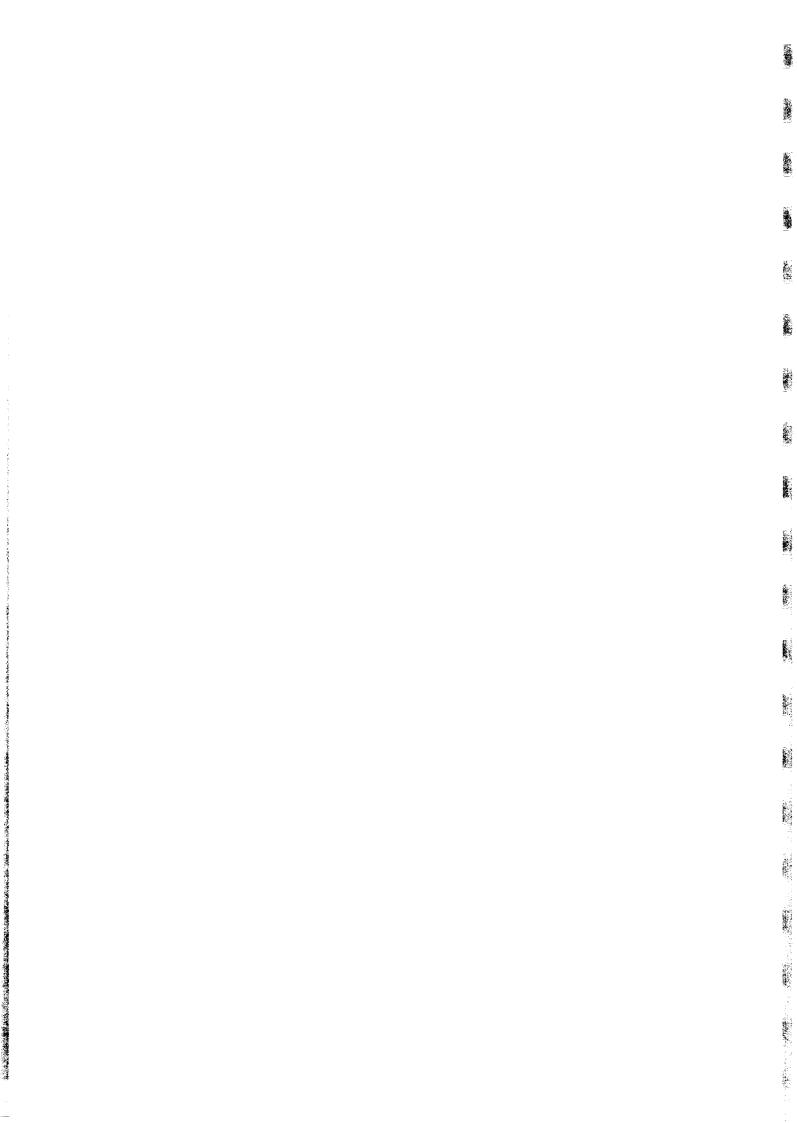

Tedjen to Mary Road Traffic and Economic Evaluation Report

Table A.12 TEDJEN TO MARY ROAD - CLASSIFIED TRAFFIC COUNT

		TOTAL													30	87	31	25	33	33								196	100	107
	TOTAI	, , , , ,	ENICLES											101	13	0 ;		14	17	13								Q.	00	696
	TOTAI	(0)													7.7	77 6	07		16	02								106	3	339
way total	OTHER													-	1 0	5 0	0	5		5								2		7
Saraks, two way total		6 - axle												C	0					0								0		0
		5 - axle												3	5	13	-	-	7 1									33		89
DIRECTION	TRUCK >2t	4 - axle												0	0	С												0		0
		3 - axle												9	2		9	\$, ~									25		86
Tedjen/Saraks		2 - axle												8	15	9	4	7	~	2								48		152
7	UTILITY	<21												0	0		1	0	0									2		8
LOCATION	BUS													3	0	-	4		0									6		26
	CAR													11	5	8	6	10	101									53		183
11/02/97	AGRI	TRACTOR												4	11	I	0	5	3									14		38
DATE	TIME	PERIOD	00:00 to 01:00	01:00 to 02:00	02:00 to 03:00	03:00 to 04:00	04:00 to 05:00	05:00 to 06:00	06:00 to 07:00	07:00 to 08:00	08:00 to 09:00	09:00 to 10:00	10:00 to 11:00	11:00 to 12:00	12:00 to 13:00	13:00 to 14:00	14:00 to 15:00	15:00 to 16:00	16:00 to 17:00	17:00 to 18:00	18:00 to 19:00	19:00 to 20:00	20:00 to 21:00	21:00 to 22:00	22:00 to 23:00	23:00 to 00:00	08:00 to 18:00	11:00 to 17:00	18:00 to 08:00	TOTAL 24 hr est.

APPENDIX B

FORECAST ADT AND ONE WAY CUMULATIVE ESA

Tedjen to Mary Road Traffic and Economic Evaluation Report

Table B.1.1 FORECAST ADT AND ONE WAY CUMULATIVE AXLE LOADS - LOW GROWTH SCENARIO

SECTION: MARY TO HAUS KHAN

Medium Heavy Articulated Trucks Light Traffic ESA 112 334 155 168 656 1421 2077 Millions 126 386 179 194 759 1598 2358 0.14 131 406 188 204 797 1662 2459 0.43 131 406 188 204 797 1662 2459 0.43 131 406 188 204 797 1662 2459 0.43 142 447 207 225 879 1798 2677 0.58 148 470 218 225 879 1944 2914 0.95 160 518 229 248 969 1944 2914 0.95 160 544 252 273 1169 2103 1.49 173 571 265 287 1178 2184 214 <		Utility	Buses		Trucks >2t		Total	Total	Total	Cumulative
334 155 168 656 1421 2077 386 179 194 759 1598 2358 406 188 204 797 1662 2459 426 198 214 837 1728 2566 447 207 225 879 1798 2567 447 207 225 879 1798 2567 447 207 225 879 1798 2577 447 207 225 879 1944 2914 493 229 1870 2793 544 252 273 1069 2103 3172 571 265 287 1122 2187 3309 659 278 1122 2275 3453 661 306 1234 2266 3663 661 306 3246 2266 3669 694 322 346 25	etc.			Medium	Heavy	Articulated	Trucks	Light	Traffic	ESA
334 155 168 656 1421 2077 386 179 194 759 1598 2358 406 188 204 797 1662 2459 426 198 214 837 1728 2566 447 207 225 879 1798 2677 440 208 228 879 1798 2677 440 209 228 1870 2793 518 240 269 1944 2914 544 252 273 1069 2103 3172 571 265 287 1122 2187 3309 599 278 1122 2275 3453 661 306 1378 2275 3453 661 306 1329 22460 363 664 322 348 1364 2559 3922 728 338 366 1432 2659 3922 728 338 366 1432 2								Vehcles	ADT	Millions
386 179 194 759 1598 2358 406 188 204 797 1662 2459 426 188 204 797 1662 2459 447 207 225 879 1798 2566 447 207 225 879 1798 2677 493 229 248 969 1944 2914 518 240 260 1018 2022 3040 544 252 273 1069 2103 3172 571 265 273 1122 2187 3309 599 278 304 3453 3453 661 306 1172 2187 3453 661 306 332 2460 3759 694 322 346 352 362 728 338 366 1432 2559 3922 728 355 384<	1133 175		112	334	155	168	959	1421	2077	0
406 188 204 797 1662 2459 426 198 214 837 1728 2566 447 207 225 879 1798 2677 447 218 236 923 1870 2677 493 229 248 969 1944 2914 518 240 260 1018 2022 3040 544 252 273 1069 2103 3172 571 265 287 1122 2187 3309 629 278 301 1178 2275 3453 629 306 332 1299 2460 3759 694 322 346 3759 362 362 694 322 349 1364 2559 3922 728 338 366 1432 2401 4093 765 355 384 1504 2767 <td< td=""><td>1275 197</td><td></td><td>126</td><td>386</td><td>179</td><td>194</td><td>759</td><td>1598</td><td>2358</td><td>0.14</td></td<>	1275 197		126	386	179	194	759	1598	2358	0.14
426 198 214 837 1728 2566 447 207 225 879 1798 2677 470 218 236 923 1870 2793 493 229 248 969 1944 2793 518 240 260 1018 2022 3040 544 252 273 1069 2103 3172 549 252 287 1122 2187 3309 629 278 301 1178 2275 3453 629 336 1239 2460 3759 661 306 1332 1299 2460 3759 694 332 349 1364 2559 3922 728 338 366 1432 2661 4093	1326 205		131	406	188	204	797	1662	2459	0.28
447 207 225 879 1798 2677 470 218 236 923 1870 2793 493 229 248 969 1944 2914 518 240 260 1018 2022 3040 544 252 273 1069 2103 3172 571 265 287 1122 2187 3309 599 278 301 1178 2275 3453 629 306 1237 2366 3603 661 306 1237 2366 3603 728 332 1299 2460 3759 728 338 366 1432 2661 4093 765 355 384 1504 2767 4271	1379 213		136	426	198	214	837	1728	2566	0.43
470 218 236 923 1870 2793 493 229 248 969 1944 2914 518 240 260 1018 2022 3040 544 252 273 1069 2103 3172 571 265 287 1122 2187 3309 599 278 301 1178 2275 3453 661 306 336 1237 2366 3603 664 322 349 1364 2559 3922 728 338 366 1432 2561 4093 765 355 384 1504 2767 4271	1434 222		142	447	207	225	879	1798	2677	0.58
493 229 248 969 1944 2914 518 240 260 1018 2022 3040 544 252 273 1069 2103 3172 571 265 287 1122 2187 3309 599 278 301 1178 2275 3453 629 292 316 1237 2366 3603 661 306 332 1299 2460 3759 694 322 349 :364 2559 3922 728 338 366 1432 2661 4093 765 355 355 3671 4271	1492 230		148	470	218	236	923	1870	2793	0.75
518 240 260 1018 2022 3040 544 252 273 1069 2103 3172 571 265 287 1122 2187 3309 599 278 301 1178 2275 3453 661 306 316 1237 2366 3603 664 322 349 1364 3759 728 338 366 1432 2559 3922 728 338 366 1432 2661 4093 765 355 355 365 4071	1551 240		153	493	229	248	696	1944	2914	0.92
544 252 273 1069 2103 3172 571 265 287 1122 2187 3309 599 278 301 1178 2275 3453 629 292 316 1237 2366 3603 661 306 332 1299 2460 3759 694 322 349 1364 2559 3922 728 338 366 1432 2661 4093 765 355 384 1504 2767 4271	1613 249		160	518	240	260	1018	2022	3040	1.10
571 265 287 1122 2187 3309 599 278 301 1178 2275 3453 661 306 332 1237 2366 3603 694 322 349 1364 2559 3922 728 338 366 1432 2661 4093 765 355 384 1504 2767 4271	1678 259		166	544	252	273	6901	2103	3172	1 29
599 278 301 1178 2275 3453 629 292 316 1237 2366 3603 661 306 332 1299 2460 3759 694 322 349 1364 2559 3922 728 338 366 1432 2661 4093 765 355 384 1504 2767 4271	1745 270		173	571	265	287	1122	2187	3309	1 49
629 292 316 1237 2366 3603 661 306 332 1299 2460 3759 694 322 349 1364 2559 3922 728 338 366 1432 2661 4093 765 355 384 1504 2767 4271	1815 280		180	665	278	301	1178	2275	3453	1.70
661 306 332 1299 2460 3759 694 322 349 :364 2559 3922 728 338 366 1432 2661 4093 765 355 384 1504 2767 4271	1887 292		187	629	292	316	1237	2366	3603	1.91
694 322 349 1364 2559 3922 728 338 366 1432 2661 4093 765 355 384 1504 2767 4271	1963 303		194	199	306	332	1299	2460	3759	2.14
728 338 366 1432 2661 4093 765 355 384 1504 2767 4271	2041 315		202	694	322	349	1364	2559	3922	2.38
765 355 384 1504 2767 4271	2123 328		210	728	338	396	1432	2661	4093	2.63
	2208 341		218	765	355	384	1504	2767	4271	2.90

つつつつ

Tedjen to Mary Road Traffic and Economic Evaluation Report

Table B.1.2 FORECAST ADT AND ONE WAY CUMULATIVE AXLE LOADS - LOW GROWTH SCENARIO

SECTION HAUS KHAN TO JUNCTION TO SERAKS, NEAR TEDJEN

etc.	3		I rucks >2t		Total	Total	Total	Cumulative
		Medium	Heavy	Articulated	Trucks	Light	Traffic	ESA
						Vehcles	ADT	Millions
	62	260	95	16	447	1101	1548	C
	70	301	110	105	517	1238	1755	800
	72	317	116	1111	543	1288	1831	0.00
	75	332	122	116	570	1339	1010	0.17
	78	349	128	122	599	1393	1007	0.20
	81	366	134	128	629	1449	7000	0.30
	85	385	141	135	099	1507	7167	0.40
	88	404	148	141	693	1567	7972	0.50
	91	424	155	148	728	1629	7357	0.08
	95	445	163	156	764	1695	2450	0.79
1001	66	468	171	164	802	C9Z1	2950	100
1564 166	103	491	180	172	842	1833	2730	1.04
1627 173	107	516	189	180	885	1906	2707	1.10
1692 179	111	541	198	189	929	1982	2011	1.32
1759 187	116	899	208	199	975	2062	3037	1.40
1830 194	120	297	218	209	1024	2144	3168	1.02

Tedjen to Mary Road Traffic and Economic Evaluation Report

Table B.1.3 FORECAST ADT AND ONE WAY CUMULATIVE AXLE LOADS - LOW GROWTH SCENARIO

SECTION JUNCTION TO SERAKS NEAR TEDJEN TO TEDJEN

	Cars	Utility	Buses		Trucks >2t		Total	Total	Total	Cumulative
Year		etc.		Medium	Heavy	Articulated	Trucks	Light	Traffic	ESA
								Vehcles	ADT	Millions
1997	1994	127	103	553	174	137	865	2223	3088	C
2000	2243	142	116	640	202	159	1001	2501	3501	0 15
2001	2332	148	120	672	212	167	1051	2601	3652	0.20
2002	2426	154	125	706	223	175	1103	2705	3808	0.30
2003	2523	160	130	741	234	184	1159	2813	3071	0.40
2004	2624	167	135	778	245	193	1216	2000	1/60	0.03
2005	2729	173	141	817	258	202	1277	3042	4320	0.91
2006	2838	180	146	858	270	213	1341	3164	1505	0.99
2007	2951	187	152	901	284	223	1408	3201	0097	1.19
2008	3069	195	158	946	298	234	1479	3422	4007	1.39
2009	3192	203	164	993	313	246	1553	3550	4701	1.01
2010	3320	211	171	1043	329	258	1630	2707	\$332	1.03
2011	3453	219	178	1095	345	271	1712	3850	1955	7 22
2012	3591	228	185	1150	362	285	1797	4004	5801	25.7
2013	3734	237	192	1207	381	299	1887	4164	1005	2.30
2014	3884	247	200	1268	400	314	1982	4330	6312	3.13

Tedjen to Mary Road Traffic and Economic Evaluation Report

Table B.2.1 FORECAST ADT AND ONE WAY CUMULATIVE AXLE LOADS - MEDIUM GROWTH SCENARIO

SECTION: MARY TO HAUS KHAN

	Cars	Utility	Buses		Trucks >2t		Total	Total	Total	Cumulative
Year		etc.		Medium	Heavy	Articulated	Trucks	Light	Traffic	ESA
1007	1122	76.	9,					Vehcles	ADT	Millions
	1133	1/3	112	334	155	168	959	1421	7077	
2000	1312	203	130	409	190	205	804	1645	9770	0 5
2001	1378	213	136	437	203		860	1777	0447	0.14
2002	1447	223	143	468	217		026	1913	2727	0.30
2003	1533	237	152	496	230		520	1017	2/33	0.46
2004	1625	251	191	526	244		1034	7000	7627	0.63
2005	1723	366	170	557	250	280	7001	23.50	30/1	0.81
2006	1826	282	181	501	ALC	202	1020	7100	3255	1.01
2007	1936	299	197	909	200	215	7011	7289	3451	1.21
2008	2052	317	202	070	200	515	1231	2426	3658	1.43
2000	2175	336	210	100	300	334	1305	2572	3877	1.66
2010	2306	356	800	746	370	334	1384	2726	4110	1.91
2011	2444	377	CPC	701	340	3/3	1467	2890	4357	2.17
2012	2591	400	750	020	200	397	1555	3063	4618	2.44
2013	7746	PCV	27.0	000	389	421	1648	3247	4895	2.73
, ,	20172	171	717	000	714	440	1747	3442	5189	3.04
2014	11167	450	788	942	437	473	1852	3648	5500	3 37

Table B.2.2 FORECAST ADT AND ONE WAY CUMULATIVE AXLE LOADS - MEDIUM GROWTH SCENARIO

SECTION HAUS KHAN TO JUNCTION TO SERAKS, NEAR TEDJEN

	Cars	Utility	Buses		Trucks >2t		Total	Total	Total	Cumulative
Year		etc.		Medium	Heavy	Articulated	Trucks	Light	Traffic	ESA
								Vehcles	ADT	Millions
1997	939	100	62	260	95	16	447	11011	15/18	
2000	1087	115	72	319	117	112	547	1274	1922	
2001	1142	121	75	341	125	119	586	1330	1027	60.0
2002	1199	127	79	365	134	128	109	1405	1924	0.18
2003	1271	135	84	387	142	135	170	1400	7507	0.28
2004	1347	143	68	410	150	144	100	1570	2000	0.39
2005	1428	151	94	435	159	152	707	1572	2283	0.50
2006	1514	161	100	461	169	191	707	10/2	2470	0.62
2007	1604	170	106	489	179	121	830	1,74	5007	0.75
2008	1701	180	112	518	190	181	660	1880	2000	0.88
2009	1803	191	119	549	201	162	690	2112	7887	1.02
2010	1161	203	126	582	213	204	6006	2112	3035	1.17
2011	2025	215	133	617	226	216	1059	7377	3733	1.33
2012	2147	228	141	654	239	229	1122	2516	3437	1.50
2013	2276	241	150	693	254	243	1190	2990	2057	1.08
2014	2412	256	159	735	269	257	1261	2827	4088	7.07
									·	10:4

Table B.2.3 FORECAST ADT AND ONE WAY CUMULATIVE AXLE LOADS - MEDIUM GROWTH SCENARIO

Tedjen to Mary Road Traffic and Economic Evaluation Report

SECTION JUNCTION TO SERAKS NEAR TEDJEN TO TEDJEN

C	ESA	Millions	C	2	0.13	0.32	0.50	0.68	0.88	1 00	100	1.31	1.55	1.80	2.06	7,7	2.34	2.64	2.96	3.29	3.65
Total	Traffic	ADT	3088	3633	2000	3833	4050	4293	4550	4823	\$112	2113	2470	5745	6809	2317	0455	2500	552/	889/	8149
Total	Light	Vehcles	2223	2573	2020	2012	7607	3007	3188	3379	3582	23.02	1616	4025	4266	4522	1703	1602	1900	2380	5709
Total	Trucks		865	1059	1133	1213	2001	1262	1307	1444	1531	1623	1770	07/1	1823	1933	2049	2172	2302	2002	7440
	Articulated		137	168	180	192	700	210	210	229	243	757	272	C/7	289	306	325	344	398	307	700
Trucks >2t	Heavy		174	214	229	245	259	275	012	767	309	327	347	240	368	390	413	438	464	407	474
	Medium		553	678	725	9//	822	872	200	476	626	1038	1100	2	110/	1237	1311	1389	1473	1561	1221
Buses			103	119	125	131	139	147	791	130	165	175	186	101	12/	209	221	235	249	264	
Utility	etc.		127	147	154	162	171	182	107	721	204	216	229	27/2	C+7	258	273	289	307	325	
Cars		, 00,	1994	2308	2423	2545	2697	2859	2021	1000	3213	3405	3610	7082	7000	4026	4299	4557	4830	5120	
	Year	2001	1997	2000	2001	2002	2003	2004	2005	5007	2006	2007	2008	2000	2007	7010	2011	2012	2013	2014	

Tedjen to Mary Road
Traffic and Economic Evaluation Report

Table B.3.1 FORECAST ADT AND ONE WAY CUMULATIVE AXLE LOADS - MEDIUM GROWTH SCENARIO; INCREASED ESA PER VEHICLE

SECTION: MARY TO HAUS KHAN

	ESA	Millions			0.21	0.40	0.76	1.07	1.40	1.75	2 12	2.12	10.7	2.93	3.37	3.84	4.33	4.86	5.42	6.01
Total	Traffic	ADT	7077	0440	1030	1967	2/33	7697	30/1	3255	3451	3650	3030	7/95	4110	4357	4618	4895	5189	5500
Total	Light	Vehcles	1421	1645	7071	1813	101	2027	1507	2160	2289	3000	0272	21.62	2,720	2002	3003	3247	3442	3648
Total	Trucks		929	804	860	026	270	1034	t Col	1096	1162	1231	1305	1384	1961	1555	1555	1040	1/4/	1852
	Articulated		168	205	220	235	249	264	Cocc	780	297	315	334	354	375	307	125	177	440	473
Trucks >2t	Heavy		155	190	203	217	230	244	050	402	274	290	308	326	346	367	380	515	714	437
	Medium		334	409	437	468	496	526	755	100	291	979	664	704	746	791	838	888	900	746
Buses			112	130	136	143	152	161	170		181	192	203	215	228	242	256	272	1 000	797
Utility	etc.		175	203	213	223	237	251	996	2	707	299	317	336	356	377	400	474	1037	430
Cars			1133	1312	1378	1447	1533	1625	1723	2001	1070	1936	2052	2175	2306	2444	2591	2746	1100	11167
	Year		1997	2000	2001	2002	2003	2004	2005	2000	2000	2007	2008	2009	2010	2011	2012	2013	2000	2014

Table B.3.2 FORECAST ADT AND ONE WAY CUMULATIVE AXLE LOADS - MEDIUM GROWTH SCENARIO; INCREASED ESA PER VEHICLE

SECTION HAUS KHAN TO JUNCTION TO SERAKS, NEAR TEDJEN

	Cumulative		_	-		1822 0.13	1924 0.29	2032 0.47	53 0 67		83. 0.88	20 1.10	1 33		1.58	82 1.84	55 2.12			32 2.73	38 3.06	57 3.41
	Total								39 2153			3 2420	74 2565			3 2882	2 3055					7 3857
	Total	Light	Vehcles	L					1489	1570		1673	1774	1000			2112	2230				7992
	Total	Į		777					664	707			791	830			942	666				1190
		Articulated		16	115	110	901	871	135	144	157	761	161	171	101	101	192	204	216	000	222	747
E	I rucks >2t	Heavy		95	117	125	127	+C1	147	150	150	100	109	179	190	200	107	213	226	230	750	177
		Medium		260	319	341	365	202	700	410	435	191	101	489	518	240	247	582	617	654	693	
Rucos	coence			62	72	75	79	78	5	68	94	100	3	106	112	110	12:	170	133	141	150	150
Ultility	Crimin	etc.		100	115	121	127	135		143	151	161		1.70	180	191	200	202	215	228	241	730
Care	2 ()			939	1087	1142	1199	1271	1 1	134/	1428	1514	1001	1004	1701	1803	101	1711	2025	2147	2276	2412
		Year	2001	1997	2000	2001	2002	2003	7000	4007	2005	2006	2007	7007	2008	2009	2010	2010	2011	2012	2013	2014

Table B.3.3 FORECAST ADT AND ONE WAY CUMULATIVE AXLE LOADS - MEDIUM GROWTH SCENARIO; INCREASED ESA PER VEHICLE

SECTION JUNCTION TO SERAKS NEAR TEDJEN TO TEDJEN

Cumulative	ESA	Millions	0	0.24	0.52	0.86	121	1 59	1 99	2 41	2 86	3 34	3 84	4 37	4 94	5 54	6.18	6.85
Total		ADT	3088	3633	3835	4050	4293	4550	4823	5113	5420	5745	6809	6455	6842	7253	7688	8149
Total	Light	Veheles	2223	2573	2702	2837	3007	3188	3379	3582	3797	4025	4266	4522	4793	5081	5386	5709
Total	Trucks		865	1059	1133	1213	1285	1362	1444	1531	1623	1720	1823	1933	2049	2172	2302	2440
	Articulated		137	168	180	192	204	216	229	243	257	273	289	306	325	344	365	387
Trucks >2t	Heavy		174	214	229	245	259	275	291	309	327	347	368	390	413	438	464	492
	Medium		553	829	725	911	822	872	924	626	1038	1100	1167	1237	1311	1389	1473	1981
Buses			103	119	125	131	139	147	156	165	175	186	197	209	221	235	249	264
Utility	etc.		127	147	154	162	171	182	192	204	216	229	243	258	273	289	307	325
Cars			1994	2308	2423	2545	2697	2859	3031	3213	3405	3610	3826	4056	4299	4557	4830	5120
	Year		1997	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014

Table B.4.1 FORECAST ADT AND ONE WAY CUMULATIVE AXLE LOADS - HIGH GROWTH SCENARIO; INCREASED ESA PER VEHICLE

SECTION: MARY TO HAUS KHAN

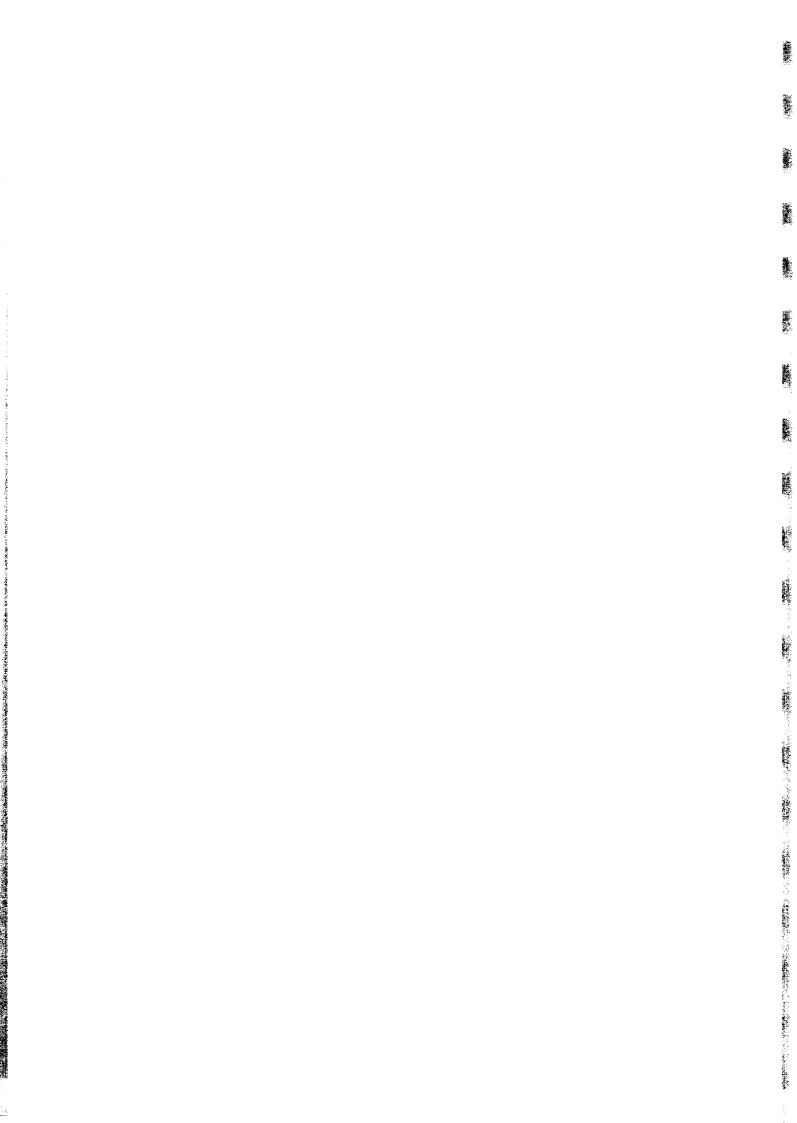
Heavy Articulated 155 168 190 205 203 220 217 235 249 269 266 288 266 288 304 330 326 353 349 404 373 404 373 463 427 463 487 495 489 530	Cars Utility 1		-	Buses		Trucks >2t		Total	Total	Total	Cumulative
Vehcles ADT Millio 155 168 656 1421 2077 190 205 804 1692 2496 203 220 860 1794 2654 217 235 920 1901 2851 232 252 985 2034 3019 249 269 1054 2177 3230 249 269 1054 2177 3230 285 308 1127 2329 3456 304 330 1206 2492 3698 349 378 1478 3053 4534 349 378 1478 3053 4536 349 432 1692 3495 5187 427 463 1810 3740 5550 457 486 1937 4002 5939	etc. Medium		Medium	Medium		Heavy	Articulated	Trucks	Light	Traffic	ESA
155 168 656 1421 2077 190 205 804 1692 2496 203 220 860 1794 2654 217 235 985 1901 2821 232 252 985 2034 3019 249 269 1054 2177 3230 266 288 1127 2329 3456 285 308 1206 2492 3698 304 330 1291 2667 3958 349 378 1478 3053 4534 349 378 1478 3053 4530 427 464 1581 3267 4848 427 463 1810 3740 5550 457 485 1937 4002 5939 489 530 2072 4282 6354									Vehcles	ADT	Millions
190 205 804 1692 2496 203 220 860 1794 2654 217 235 920 1901 2821 232 252 985 2034 3019 249 269 1054 2177 3230 266 288 1127 2329 3456 285 308 1206 2492 3698 304 330 1291 2667 3957 349 378 1478 3053 4534 349 437 1692 3495 5187 427 463 1810 3740 5550 457 486 539 539 538 489 530 2072 4282 6354	1133 175 112 33	112		3.	334	155	168	959	1421	2077	0
203 220 860 1794 2654 217 235 920 1901 2821 232 252 985 2034 3019 249 269 1054 2177 3230 266 288 1127 2329 3456 285 308 1206 2492 3698 304 330 1291 2667 3957 349 378 1478 3053 4534 349 378 1478 3053 4530 427 463 1810 3749 5187 427 463 1810 3749 5550 457 489 530 5336 5336	1350 209 134	134			409	190		804	1692	2496	0.21
217 235 920 1901 2821 232 252 985 2034 3019 249 269 1054 2177 3230 266 288 1127 2329 3456 285 308 1206 2492 3698 304 330 1291 2667 3957 349 378 1478 3053 4534 373 404 1581 3267 4848 427 463 1810 3740 5550 457 485 1810 3740 5550 489 530 2072 4282 6354	1431 221 142		142		437	203		098	1794	2654	0.46
232 252 985 2034 3019 249 269 1054 2177 3230 266 288 1127 2329 3456 285 308 1206 2492 3698 304 330 1291 2667 3957 326 353 1381 2853 4234 349 378 1478 3053 4530 427 463 1810 3740 5550 457 485 1937 4002 5939 489 530 2072 4282 6354	1517 234 150		150		468	217	235	920	1901	2821	0.76
249 269 1054 2177 3230 266 288 1127 2329 3456 285 308 1206 2492 3698 304 330 1291 2667 3957 326 353 1381 2853 4234 349 378 1478 3053 4530 373 404 1581 3267 4848 427 463 1810 3740 5550 457 485 1937 4002 5939 489 530 2072 4282 6354	1623 251 161	i	161		501	232		985	2034	3019	1.07
266 288 1127 2329 3456 285 308 1206 2492 3698 304 330 1291 2667 3957 326 353 1381 2853 4234 349 378 1478 3053 4530 373 404 1581 3267 4848 427 463 1810 3740 5550 457 495 1937 4002 5939 489 530 2072 4282 6354	1737 268 172		172		536			1054	2177	3230	1.41
285 308 1206 2492 3698 304 330 1291 2667 3957 326 353 1381 2853 4234 349 378 1478 3053 4530 373 404 1581 3267 4848 427 463 1810 3740 5550 457 495 1937 4002 5939 489 530 2072 4282 6354	1858 287 184		184		573	266		1127	2329	3456	1.77
304 330 1291 2667 3957 326 353 1381 2853 4234 349 378 1478 3053 4530 373 404 1581 3267 4848 427 463 1810 3740 5550 457 495 1937 4002 5939 489 530 2072 4282 6354	1988 307 197	197			613	285		1206	2492	3698	2.16
326 353 1381 2853 4234 349 378 1478 3053 4530 373 404 1581 3267 4848 399 432 1692 3495 5187 427 463 1810 3740 5550 487 495 1937 4002 5939 489 530 2072 4282 6354	2127 329 210		210		959	304		1291	2667	3957	2.57
349 378 1478 3053 4530 373 404 1581 3267 4848 399 432 1692 3495 5187 427 463 1810 3740 5550 457 495 1937 4002 5939 489 530 2072 4282 6354			225		702	326		1381	2853	4234	3.01
373 404 1581 3267 4848 399 432 1692 3495 5187 427 463 1810 3740 5550 457 495 1937 4002 5939 489 530 2072 4282 6354	2436 376 241		241		751	349		1478	3053	4530	3.49
399 432 1692 3495 5187 427 463 1810 3740 5550 457 495 1937 4002 5939 489 530 2072 4282 6354	2606 403 258		258		804	373		1581	3267	4848	3.99
427 463 1810 3740 5550 457 495 1937 4002 5939 489 530 2072 4282 6354	2789 431 276		276		860	399		1692	3495	5187	4.53
457 495 1937 4002 5939 489 530 2072 4282 6354	2984 461 295		295		921	427	463	1810	3740	5550	5.11
489 530 2072 4282 6354	316	316			985	457	495	1937	4002	5939	5.73
	3416 528 338	338			1054	489		2072	4282	6354	6.40

Table B.4.2 FORECAST ADT AND ONE WAY CUMULATIVE AXLE LOADS - HIGH GROWTH SCENARIO;INCREASED ESA PER VEHICLE

SECTION HAUS KHAN TO JUNCTION TO SERAKS, NEAR TEDJEN

Cumulativo	ESA	Millions	C	0 13	0.00	0.29	0.48	0.0	0.09	11.1	1.36	1.62	0.1.0	2.19	2.31	2.03	3.22	4.03
Total	Traffic	ADT	1548	1858	1075	2,61	2777	1477	4047	21.62	2017	23.61	2277	3700	3860	7131	0000	4729
Total	Light	Vehcles	1101	1311	1390	1473	9251	1687	1805	1007	7066	2000	7365	2531	2708	2898	3101	3318
Total	Trucks		447	547	586	729	671	717	768	821	870	040	1006	1077	1152	1233	1319	1411
	Articulated		16	112	119	128	137	146	157	167	179	192	205	220	235	251	269	288
Trucks >2t	Heavy		95	117	125	134	143	153	164	175	187	201	215	230	246	263	281	301
	Medium		260	319	341	365	391	418	447	479	512	548	586	628	671	718	692	823
Buses			62	74	78	83	88	95	101	108	116	124	133	142	152	163	174	186
Utility	etc.		100	119	126	133	143	153	163	175	187	200	214	229	245	262	281	300
Cars			939	1119	1186	1257	1345	1439	1540	1648	1763	1886	2019	2160	2311	2473	2646	2831
	Year		1997	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014

Tedjen to Mary Road Traffic and Economic Evaluation Report


Table B.4.3 FORECAST ADT AND ONE WAY CUMULATIVE AXLE LOADS - HIGH GROWTH SCENARIO; INCREASED ESA/VEHICLE

SECTION JUNCTION TO SERAKS NEAR TEDJEN TO TEDJEN

Cumulative	ESA	Millions	С	0.24	0.50	0.86	1 22	1 60	2 02	2 46	2 93	3.43	3.97	4.55	5 17	5 83	6.54	
Total Cur			3088	3707	3940	4188	4481	4794	5130	5489	5873	6284	6724	7195	6692	8238	8814	
Total	Light	Vehcles	2223	2648	2807	2975	3183	3406	3644	3900	4173	4465	4777	5112	5469	5852	6262	000
Total	Trucks		865	1059	1133	1213	1297	1388	1485	1589	1701	1820	1947	2083	2229	2385	2552	1,620
	Articulated		137	168	180	192	206	220	235	252	270	288	309	330	353	378	405	122
Trucks >2t	Heavy		174	214	229	245	262	280	300	321	343	367	393	420	450	481	515	155
,	Medium		553	829	725	922	830	888	950	1017	1088	1164	1246	1333	1426	1526	1633	1777
Buses			103	122	130	137	147	157	168	180	193	206	221	236	253	270	289	310
Utility	etc.		127	151	160	691	181	194	208	222	238	254	272	291	311	333	357	382
Cars			1994	2375	2517	2668	2855	3055	3269	3497	3742	4004	4284	4584	4905	5249	5616	6009
	Year		1997	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014

APPENDIX C

EXISTING ROAD ROUGHNESS MODIFIED STRUCTURAL NUMBER AND REHABILITATION OPTIONS

Tedjen to Mary Road Traffic and Economic Evaluation Report

Table C.1 EXISTING ROUGHNESS AND STRUCTURAL NUMBERS AND REHABILITATION OPTIONS

	Section	lon				Over	Overlay Secti	lons			- Re	Reconstruction/New	tion/New	_	Š	Overlay	Dogono	Daggagtariotica
From	To	Length	Width	40	40 mm	75 mm	mm	120 mm	mm	Total	Recon.	on.	New	3	Average	Modified	Average	Modified
				length		length	area	length	area	length	length	area	length	area	Rough	Structural	Rough	Structural
		E	ш	Е	m^2	Е	m^2	Е	m^2	띮	ш	m^2	ш	m^2	IRI/km	Number	IRI/km	Number
		-																
0		1000	9.00		0		0		0	0	1000	0006		0			V 0	75 /
1000	2000	1000	9.00		0		0		0	0	1000	0006		0			0.0	4.30
2000	3000	1000	9.00		0		0		0	0	1000	0006		-			0.3	4.30
3000		009	9.00		0		0		0	0	009	5400		0 0	_		, v	4.30
3600	3800	200	9.00		0		0		0	0)	200	1800	_		7.0	4.50
3800		100	12.40		0		0		0	0			100	1240	_		7.0	4.50
3900	4000	100	9.00		0		0		0	_			001	000			7.0	4.30
4000	4200	200	9.00		0		0		0	C		-	200	1800			7.0	4.30
4200	4550	350	9.00		0		0		0	0	350	3150	3	3			4.8	4.30
4550	4950	400	8.80	400	3520		0		0	400	0	0		0 0	8 1	2.02	6.4	4.30
4950	5650	700	9.00		0		0		0	0	700	6300		0 0	o F		7	ŗ
5650	0009	350	9.00		0		0		0	0	350	3150		0 0			1.7	5.05
0009	0999	650	9.00	-	0		0		0	0	650	5850		0			7.1	5.05
9650	7000	350	9.20	350	3220		0		0	350	0	0		0	3.0	3.03	5.7	5.03
7000	7500	200	11.90	200	5950		0		0	200	0	0		0	4.2	2.03		
7500	8000	200	11.90	200			0		0	200	0	0		· c	C:+ 4	2.03		
8000	8150	150	8.90	150	1335		0		0	150	0	0		o	. A	0 t. 7		
8150	0006	820	9.00		0		0		0	0	850	7650		0	r	7.70	_	Ċ
0006	9460	460	9.00		0		0		0	0	460	4140		· c			, ,	04.7
9460	9750	290	9.00		0		0		0	0			. 290	2610			2.0	64.7
9750	9862	112	12.25		0		0		0	0			112	1372			5.2	2.48
 Total Section 	tion 1	9862	-	1900	19975	0	0	0	0	1900	0969	62640	1002	9722				
1																		

Tedjen to Mary Road Traffic and Economic Evaluation Report

Table C.1 EXISTING ROUGHNESS AND STRUCTURAL NUMBERS AND REHABILITATION OPTIONS

Doconstantion	Modified	Stratethrea	Number	2011	2.48	2.48	3.74	3.74	3.74	1.7	1.7	1.7	1.7	1.7	5	2	2			2.47	2.47	2.47	2.47	2.96	2.96				(24.7 CA C
Docong	Average	Pough	IRI/km		5.2	4.4	4.4	4.3	5	6.4	6.4	6.4	5.4	6.5	6.5	9.9	9.9		I	5.7	6.5	5.8	6.1		9.1	,				0.0
Overlay	Modified	Structural	Number															2	2.74							3.23	7.09	7.09	74.7	
Ovo	Average	Rough	IRI/km															5.7	2./						0 7	¢. 4	o c	4 ¢	7 <u>.</u>	
	≱	area	m^2	1223	1323	0/67			Ċ	5 6	5 0	> 0	5 0	o 0	5 6	o (5 6	5	5 6	> C	<u> </u>	0 0	5 6	S C	> <	> <	0	0	0 0	0
ion/New	New	length	, E	001	100	055																	-		-					
Reconstruction/New	Recon.	area	m^2			0009	0000	0006	3150	2850	0000	0000	0006	1950	0504	4000	00+0	<u> </u>	1080	0006	0006	0006	0006	8550	0.55	· -	0	0	7650	3150
R	Rec	length	ш			700	1000	1000	350	650	1000	1000	550	0.00	057	004	3	o c	120	1000	1000	1000	1000	950	0	0	0	0	850	350
	Total	length	ш	0	· c	O	o c	5 C	0	· c	0	· c	0	· c	0	0	950	880	0	0	0	0	0	0	50	1000	1000	150	0	0
	120 mm	area	m^2	0	· C	o c	O	0 0	0	· c	0	· c	0	· c	· c	0	5 0	0	0	0	0	0	0	0	0	0	0	0	0	0
ions	120	length	ш																					•						
Overlay Sections	75 mm	area	m^2	0		· ·	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Over	75	length	E																											
	40 mm	area	m^2	0	0	0	0	0	0	0	0	0	0	0	0	0	8075	7656	0	0	0	0	0	0	435	8500	8200	1275	0	0
	40	length	Е						•								950	880							50	1000	1000	150		
	Width		Е	12.25	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	8.50	8.70	9.00	9.00	9.00	9.00	9.00	9.00	8.70	8.50	8.20	8.50	9.00	9.00
ion	Length		E	108	330	700	1000	1000	350	650	1000	1000	550	450	450	009	950	880	120	1000	1000	1000	1000	950	50	1000	1000	150	850	350
Section	To	•		9970	10300	11000	12000	13000	13350	14000	15000	16000	16550	17000	17450	18050	19000	19880	20000	21000	22000	23000	24000	24950	25000	26000	27000	27150	28000	28350
	From			9862	9970	10300	11000	12000	13000	13350	14000	15000	16000	16550	17000	17450	18050	19000	19880	20000	21000	22000	23000	24000	24950	25000	26000	27000	27150	28000

Tedjen to Mary Road Traffic and Economic Evaluation Report

Table C.1 EXISTING ROUGHNESS AND STRUCTURAL NUMBERS AND REHABILITATION OPTIONS

	ruction	Modified	Structural	Number		9.0	9.0	?				1	0.52	-0.38	-0.38	-0.38					2.32	2.32	2.32	1.48	0.64	0.64	0.64	0.64	***		_	236
D. C.	Keconstruction	Average	Rough	IRI/km		4.8	4.1						4	5.4	6.3	6.3					4.5	4.5	4.5	7	7 .	× ·	œ i	1.7			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	×
	ılay	Modified	Structural	Number				1 80	1 60	1.07	1.01	1.8.1					0.91	2.26	3.01	3.61					-			6	2.30	2.30	2.36	7.30
Overlay	3	Average	Rough	IRI/km				4	7.7	7 7	. 4	J				•	y, 4	y. 4 y. 4	C.4.	C.4								,		† ·	4. 4	0
		New	area	m^2		5	0	0	· C	o c	5 6	0	> <	> 6	5 0	5 6	-	o c	<u> </u>	> <	5 6	5 6	> <	0	· c	5 6	> <	> <) C	> <	o c	0
ion/Nev	N N	Ž	length	ш						_				-				•11		•												
Reconstruction/New	5	OII.	area	m^2	10800	00001	3600	0	0	· c	0	9135	4815	7766	6534		0 0	o c	· C	3600	3600	2430	10170	7830	7470	1926	2574	· c	0	· C	0	3600
Re	Recon		length	E	1200	200	400	0	0	0	C	1015	535	474	7.7	9 0	0 0	0	-	400	400	270	1130	870	830	214	286	0	0	0	0	400
	Total	7	lengtn	E		0 0	>	20	1000	1000	1000	0	0		0	250	1000	550	400	0	0	0	0	0	0	0	0	650	350	650	250	0
	mm		area	m^2	0	· <	>	0	0	0	0	0	0	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ions	120 mm	1,000	mguar	E						•						• "		·· <u>,</u>														
Overlay Sections	75 mm	020	41 Cd	7,JM	0		5	0	0	0	0	0	0	0	0	2025	8200	4455	0	0	0	0	0	0	0	0	0	0	0	5590	2225	0
Over	75	longth	ıngırar	E												250	1000	550												650	250	
	40 mm	ores	B 1	7.11	0	0	> ;	435	8000	8300	8100	0	0	0	0	0	0	0	3240	0	0	0	0	0	0	0	0	5395	3010	0	0	0
	40	lonoth	iciigiii	F				20	1000	1000	1000								400		·· ,							650	350			
	Width		1		9.00	00 6	2 6	8.70	8.00	8.30	8.10	9.00	9.00	9.00	9.00	8.10	8.20	8.10	8.10	9.00	9.00	9.00	9.00	9.00	00.6	9.00	9.00	8.30	8.60	8.60	8.90	9.00
uo	Length			=	1200	400	2 0	20	1000	1000	1000	1015	535	474	726	250	1000	550	400	400	400	270	1130	870	830	214	286	929	350	650	250	400
Section	To				29550	29950	0000	30000	31000	32000	33000	34015	34550	35024	35750	36000	37000	37550	37950	38350	38750	39020	40150	41020	41850	42064	42350	43000	43350	44000	44250	44650
	From				28350	29550	00000	29950	30000	31000	32000	33000	34015	34550	35024	35750	36000	37000	37550	37950	38350	38750	39020	40150	41020	41850	42064	42350	43000	43350	44000	44250

Table C.1 EXISTING ROUGHNESS AND STRUCTURAL NUMBERS AND REHABILITATION OPTIONS

10:10:1	Modified	Structural	Number		2.30	87.7	7.7	7.7	20.1	+ :-		•		7.0	7.7	7 6	7.7	7:7	1.00	1.00	3.78	3.28	2 2 8	3.28	1 03	1.03	1.03	1.03	1.46	1.16
Doconce	Average Modif	Ronoh	IRI/km	0,1	6.4	2.1	y.4 2	4. 4	7.7					6.7	; , ,	† <	†	3.6	0.0	† v	0.0	9 %	2. 4	6.5	5.5	3. 4	, •	4 9	6.7	v
Overlay	Modified	Structural	Number				,			1 40	1.40	7 44	2 44	i				***												
المم	Average	Rough	IRI/km							3.3	2.7		7 %	2											•		•			H-P-
	MS A	area	m^2	O	•	> <	0 0	> =	0	O	0	0	0	0	0	0	0	O	0	0	0	0	0	0	0	0	0	0	0	0
ion/Nev	New	length	m																											
Reconstruction/New	on.	area	m^2	3735	0006	0006	0006	9045	5220	0	0	0	0	19080	5220	3780	4320	4680	0006	9063	1557	6750	9864	9324	9423	1989	7884	9810	9836	10836
Re	Recon.	length	ш	415	1000	1000	1000	1005	580	0	0	0	0	2120	580	420	480	520	1000	1007	173	750	1096	1036	1047	221	876	1090	1104	1204
	Total	length	E	0	0	0	0	0	0	350	1000	1000	950	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	mm	area	m^2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ions	120 mm	length	E						•																					
Overlay Sections	75 mm	area	m^2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Over	12	length	E																											
	40 mm	area	m^2	0	0	0	0	0	0	2905	7700	8500	8360	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	40	length	Е						.,,,,,	350	1000	1000	950															131		
	Width		E	9.00	9.00	9.00	9.00	9.00	9.00	8.30	7.70	8.50	8.80	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00
on	Length		Е	415	1000	1000	1000	1005	280	350	1000	1000	950	2120	280	420	480	520	1000	1007	173	750	1096	1036	1047	221	876	1090	1104	1204
Section	То			45065	46065	47065	48065	49070	49650	20000	21000	52000	52950	55070	55650	26070	56550	57070	58070	59077	59250	00009	96019	62132	63179	63400	64276	99859	66470	67674
	From			44650	45065	46065	47065	48065	49070	49650	20000	51000	22000	52950	55070	55650	26070	56550	57070	58070	59077	59250	00009	96019	62132	63179	63400	64276	99859	66470

Table C.1 EXISTING ROUGHNESS AND STRUCTURAL NUMBERS AND REHABILITATION OPTIONS

Tedjen to Mary Road Traffic and Economic Evaluation Report

action	Modified	Structural	Number		1 46	2 47	2.47	2 47	0.43	0.63	
Reconstruction	Average				4 4	3.5	2 6		3.7	4.9	
Overlay	Modified	Structural	Number								
Ove	Average	Rough	IRI/km								
	3	area	m^2		0	0	0	0	0	0	4293
on/New	New	length	ш								438
Reconstruction/New	on.	area	m^2		0006	0006	0006	0006	0006	7344	48710 438390
Re	Recon.	length	ш		1000	1000	1000	1000	1000	816	48710
	Total	length	ш		0	0	0	0	0	0	0 14480
	mm	area	m^2		0	0	0	0	0	0	0
ons	120 mm	length	Е								0
Overlay Sections	nm	area	m^2		0	0	0	0	0	0	2700 22495
Over	75 mm	length	ш								
	40 mm	area	m^2		0	0	0	0	0	0	98086
	40 1	length	E								11780
	Width	<u> </u>	Е		9.00	9.00	9.00	9.00	9.00	9.00	
uo	Length Width		В	-	1000	1000	1000	1000	1000	816	63628
Section	To				68674				72674		tion 2
	From				67674	68674	69674	70674	71674	72674	Total Section 2

Tedjen to Mary Road Traffic and Economic Evaluation Report

Table C.1 EXISTING ROUGHNESS AND STRUCTURAL NUMBERS AND REHABILITATION OPTIONS

	Section	on				Over	Overlay Sect	tions			Re	Reconstruction/New	ion/Nev	^	Ove	Overlav	Recons	Reconstruction
From	To	Length	Width	40	40 mm	75 mm	mm	120 mm	mm	Total	Recon.	on.	New	w.	Average	Modified	Average	Modified
				length	area	length		length	area	length	length	area	length	area	Rough	Structural	Rough	Structural
		ш	E	ш	m^2	ш	m^2	Е	m^2	В	ш	m^2	ш	m^2	IRI/km	Number	IRI/km	Number
73490	74650	1160	9.00		0		0		0	0	1160	10440		0			5.3	0.63
74650	75050	400	9.00		0		0		0	0	400	3600		0			10.5	0.08
75050	75250	200	9.00		0		0		0	0	200	1800		0			10.5	0.08
75250	75674	424	9.00		0		0		0	0	424	3816		0			10.5	0.08
75674	76674	1000	9.00		0		0		0	0	1000	0006		0			8.7	0.08
76674	77674	1000	9.00		0		0		0	0	1000	0006		0			8.6	0.08
77674	77774	100	00.6		0		0		0	0	100	006		0			9.7	-0.16
77774	77934	160	9.00		0		0		0	0	160	1440		0			15	-0.16
77934	78674	740	9.00		0		0		0	0	740	0999		0			8.6	-0.16
78674	79674	1000	9.00		0		0		0	0	1000	0006		0			9.6	-0.16
79674	80000	326	00.6		0		0		0	0	326	2934		0			6.7	6.0
80000	80674	674	9.10		0	674	6133		0	674	ن	0		0	6.7	2.33		**
80674	81000	326	9.10		0	326	2967		0	326	0	0		0	6.9			-
81000	81674	674	8.90	674	5999				0	674	0	0		0	6.9	0.8		
81674	82000	326	8.90	326	2901			_	0	326	0	0		0	7.1			
82000	82350	350	8.80	350	3080		0		0	350	0	0		0	7.1	8.0		_
82350	82674	324	8.80	324	2851		0		0	324	0	0		0	7.1	1.98		
82674	83000	326	8.80	326	2869		0		0	326	0	0		0	9	1.98		
83000	83400	400	9.00	400	3600		0		0	400	0	0		0	9	1.98		
83400	83674	274	9.00		0		0		0	0	274	2466		0			9	1.98
83674	84674	1000	9.00		0		0		0	0	1000	0006		0			6.2	1.94
84674	85674	1000	9.00		0		0		0	0	1000	0006		0			6.5	1.94
85674	86674	1000	9.00		0		0		0	0	1000	0006		0			9.9	1.94
86674	87674	1000	9.00		0		0		0	0	1000	0006		0			5.7	1.36
87674	88674	1000	9.00		0		0		0	0	1000	0006		0			9	1.36
88674	89100	426	9.00		0		0		0	0	426	3834		0			3.9	1.36
89100	89674	574	9.10	574	5223		0		0	574	0	0		0	3.9	1.36		

ဗ

Tedjen to Mary Road Traffic and Economic Evaluation Report

Table C.1 EXISTING ROUGHNESS AND STRUCTURAL NUMBERS AND REHABILITATION OPTIONS

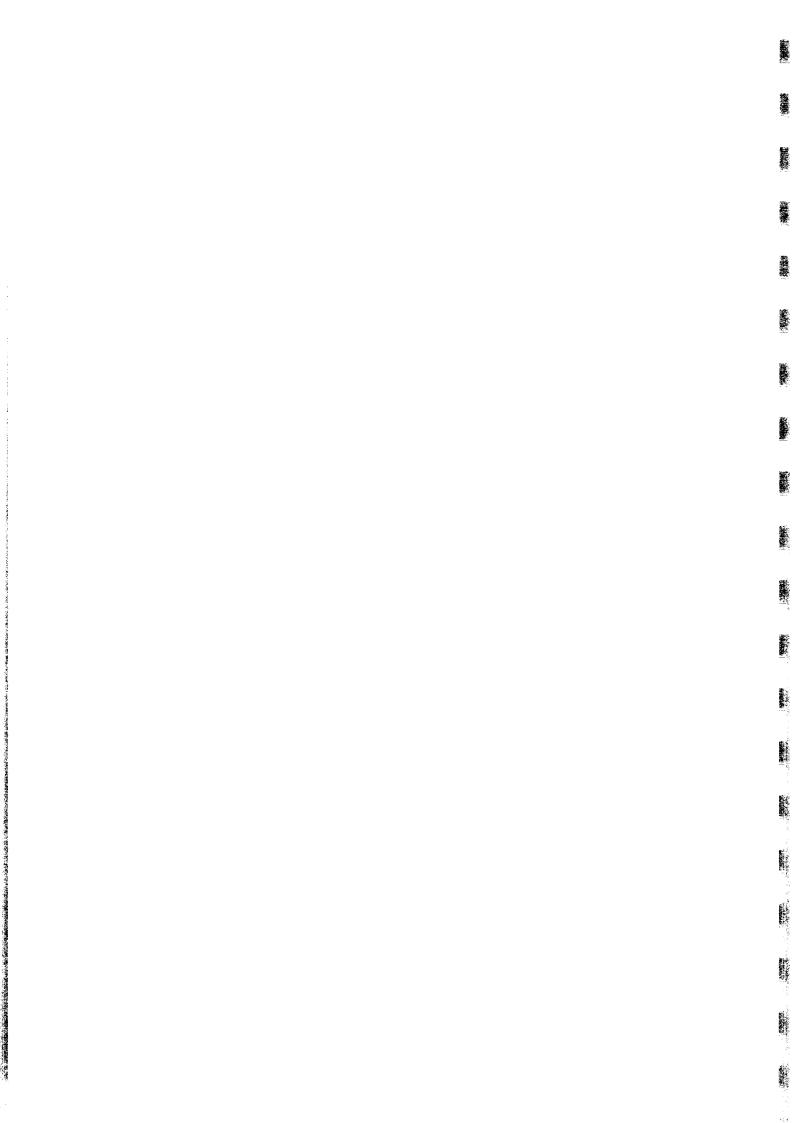
Г	T	. –	<u> </u>	T						1	- 0	0 4	<u> </u>	4 C	4 u	<u>ي</u> ر	0 0	0						·							
metion	Modified	Structural	Number							-	1.0/	1.00	C+.4	2.C C1.C	21.6	7 6	2.03	7.00								0	10	7.14	2.1.	7 33	1
Reconstruction	Average	Rough	IRI/km							0	4.0	0.00	0.0	1.7.1	17.1	1 0	1.1	0.7040								6 9	6 3333	4.6	· ·	3	>
rlav	Modified	Structural	Number		1.87	1.87	1 87	1.07	1.0/	1.0/								3 27	77.6	3.27	1 1 2	1.13	1.13	1.13	0.97	-					-
Overlay	Average	Rough	IRI/km		4.7	4.7	5 3	2 4	A	ř	•					-		5.0	5.0	63	6.3	99	99	6.9	6.9				•		
	¥	area	m^2		0	0	C	0	· C	0	0	0	0	Ö	0	0	0	0	0	0	C	0	· C	0	0	0	0	0	0	0	,
ion/New	New	length	ш					271									<u></u>													<u> </u>	
Reconstruction/New	on.	area	m^2		0	0	0	0	0	9909	18000	0006	18000	0006	0006	0006	117684	0	٥	0	0	0	0	0	0	3816	27000	0006	0006	0006	000
Rec	Recon.	length	Е	(5	0	0	0	0	674	2000	1000	2000	1000	1000	1000	13076	0	0	0	0	0	0	0	0	424	3000	1000	1000	1000	1000
	Total	length	E	ò	270	674	326	674	326	0	0	0	0	0	0	0	0	250	674	326	674	326	674	326	250	0	0	0	0	0	-
	mm	area	m^2	(5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	c
ions	120 mm	length	Е										- 20																		
Overlay Sections	nm	area	m^2	•	>	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	_
Over	75 mm	length	Е												-							-			•		•		•		ladabal
	mm	area	m^2	2000	1067	9909	2934	2196	2804	0	0	0	0	0	0	0	0	2175	6133	2967	5931	5869	5999	2901	2375	0	0	0	0	0	_
	40 mm	length	E	300	020	674	326	674	326									250	674	326	674	326	674	326	250						_
	Width		E	0	7.10	9.00	9.00	8.60	8.60	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	8.70	9.10	9.10	8.80	8.80	8.90	8.90	9.50	9.00	9.00	9.00	9.00	9.00	00 6
	Length		Е	300	320	674	326	674	326	674	2000	1000	2000	1000	1000	1000	13076	250	674	326	674	326	674	326	250	424	3000	1000	1000	1000	1000
ecti	To			00000	20000	90674	91000	91674	92000	92674	94674	95674	97674	98674	99674	100674	113750	114000	114674	115000	115674	116000	116674	117000	117250	117674	120674	121674	122674	123674	124674
	From		1	72700	4/060	00006	90674	91000	91674	92000	92674	94674	95674	97674	98674	99674	100674	113750	114000	114674	115000 1	115674	116000 1	_							123674

Tedjen to Mary Road Traffic and Economic Evaluation Report

Table C.1 EXISTING ROUGHNESS AND STRUCTURAL NUMBERS AND REHABILITATION OPTIONS

	Section	on				Overl	Overlay Sections	ons			Re	Reconstruction/New	on/New		Ove	Overlay	Reconstruction	ruction
From	To	Length	Width	40 1	40 mm	75 mm	шu	120 mm	mm	Total	Recon	on.	New	3	Average	Modified	Average	Modified
			"	length		length	area	length	area	length	length	area	length	area	Rough	Structural	Rough	Structural
		ш	Е	Е	m^2	В	m^2	ш	m^2	Е	Е	m^2	ш	m^2	IRI/km	Number	IRI/km	Number

124674	125050	376	9.00		0		0		0	0	376	3384		0			5.2	2.53
125050	125674	624	9.00		0		0		0	0	624	5616	•	0			5.2	2.53
125674	126550	876	9.00		0		0		0	0	876	7884		0			4.9	2.94
126550	127000	450	9.10		0		0	450	4095	450	0	0		0	4.95	2.94	_	
127000	127350	350	9.00	350	3150		0		0	350	0	0		0	5	2.94		
127350	128674	1324	9.00		0		0		0	0	1324	11916		0			4.2	2.94
128674	130674	2000	9.00		0		0		0	0	2000	18000		0			5.7	3.52
130674	130750	92	9.00		0		0		0	0	9/	684	-	0			6.1	3.52
130750	131550	800	9.00		0		0		0	0	800	7200		0			6.9	2.86
131550	132000	450	9.00		0	450	4050		0	450	0	0		0	7.2	2.46		
132000	132674	674	9.00		0	674	9909		0	674	0	0		0	7.2	2.46		
132674	133000	326	9.00		0	326	2934		0	326	0	0		0	4.3	2.46		
133000	133050	20	8.00		0	50	400		0	20	0	0		0	4.3	3.03		
133050	134674	1624	9.00		0		0		0	0	1624	14616		0			6.7	3.03
134674	139674	2000	9.00		0		0		0	0	2000	45000		0			7.72	2.81
139674	140350	9/9	9.00		0		0		0	0	929	6084		0			10.7	2.81
140350	140674	324	8.10	324	2624		0		0	324	0	0		0	10.7	5.83		
140674	141000	326	8.10	326	2641		0		0	326	0	0		0	×	5.83		
141000	141674	674	10.00	674	6740		0		0	674	0	0		0	∞	5.83		
141674	142000	326	10.00	326	3260		0		0	326	0	0		0	8.4			
142000	142527	527	13.00	527	6851		0		0	527	0	0		0	13.6	5.83		
Total Section 3	tion 3	69037		11327	103706	2500	22550	450	4095	14277	54760	492840	0	0				
Overall Totals	[Totals	142527		25007	221767	5200	45045	450	4095	30657	110430	993870	1440	14015				
														•				
Source.	Source: Consultants	ıts																


Source: Consultants

ဗ္ဗ

APPENDIX D

HDM INPUT DATA

こと、そのでしていています。 ままり またい リース ははまぐらの いたいしょうにんせい こまでは 不成の おおなな はない などの はない ままして といばればれる 大学なる あんせん 動物

ANALYSIS CONTROL

Description Rehabilitation - Tedjen to Mary

Run Date Day 14 Month 08 Year 97

Discount Rate (%) 15.0

Analysis Period (years) 20

Calendar Year of Initial Year 1998

Input Currency Name Dollars

Output Currency Name Dollars

Output Currency Conversion Multiplier 1.0000000

Description	T-M	Section	1A	overlay	1.900	km
-------------	-----	---------	----	---------	-------	----

Road Class (Paved/Unpaved) F

GEOMETRY	•
----------	---

Road Length (km) One Shoulder Width (m) Rise & Fall (m/km) Superelevation (%)	1.9 3.0 1.6 0.0	Road Width (m) Effective Number of Lanes Curvature (deg/km)	10.5 2.0 24.3
subererevation (%)	0.0		

ENVIRONMENT

Altitude (m) 190 Rainfall (m/month) 0.0110

SURFACE Surface Type 7

Thickness: New Surfacing Layers (mm) 50 Old Surfacing Layers (mm) 180

BASE/SUBGRADE Base Type 1 Subgrade CBR(%) 9
If Cement Stabilized Base: Thickness of Base Layers (mm) 0
Resilient Modulus of Soil Cement (GPa) 0

STRENGTH Structural Number 2.84 Benkelman Beam Deflection (mm)

CONDITION Roughness (IRI) 4.3 Construction Fault Code 1
Area All Cracks (%) 1.3 Wide Cracks (%) 0.0 Potholes (%) 0.000
Ravelled (%) 0.0 Rut Depth (mm) 25 Rut Depth St. Deviation (mm) 10

HISTORY Surfacing Age (y) 7 Construction Age (y) 20
For Old Surfacing Layers, Previous Area of Wide Cracks (%) 20

DETERIORATION FACTORS
Cracking Initiation 1.00
Ravelling Initiation 1.00
Pothole Progression 1.00
Roughness Progression 1.50
Roughness Progression 1.50

TRAFFIC

Light Medium Heavy Articulated
Car Pickup Bus Truck Truck Truck Truck

Average Daily Traffic 1994 127 103 0 553 174 137

Traffic Growth (%) 5.7 5.7 5.7 0.0 6.3 6.3 6.3

Change Traffic Growth in Year New Traffic Growth (%)

CONGESTION

Include Congestion Effects (Y/N) N
Road Type Two Lane
Road Use Seasonal
Roadside Friction 1.00

Description T-M Section 1B recon. 7.962 km
Road Class (Paved/Unpaved) P
GEOMETRY Road Length (km) 8.0 Road Width (m) 9.0 One Shoulder Width (m) 3.0 Effective Number of Lanes 2.0 Rise & Fall (m/km) 1.6 Curvature (deg/km) 24.3 Superelevation (%) 0.0
ENVIRONMENT Altitude (m) 190 Rainfall (m/month) 0.0110
SURFACE Surface Type 7 Thickness: New Surfacing Layers (mm) 50 Old Surfacing Layers (mm) 180
BASE/SUBGRADE Base Type 1 Subgrade CBR(%) 9 If Cement Stabilized Base: Thickness of Base Layers (mm) 0 Resilient Modulus of Soil Cement (GPa) 0
STRENGTH Structural Number 3.79 Benkelman Beam Deflection (mm) .
CONDITION Roughness (IRI) 6.3 Construction Fault Code 1 Area All Cracks (%) 1.3 Wide Cracks (%) 0.0 Potholes (%) 0.000 Ravelled (%) 0.0 Rut Depth (mm) 25 Rut Depth St. Deviation (mm) 10
HISTORY Surfacing Age (y) 7 Construction Age (y) 20 For Old Surfacing Layers, Previous Area of Wide Cracks (%) 20
DETERIORATION FACTORS Cracking Initiation 1.00 Ravelling Initiation 1.00 Pothole Progression 1.00 Roughness-age Term 0.70 Cracking Progression 1.00 Rut Depth Progression 1.50 Roughness Progression 1.50
TRAFFIC
Light Medium Heavy Articulated Car Pickup Bus Truck Truck Truck Truck
Average Daily Traffic 1994 127 103 0 553 174 137 Traffic Growth (%) 5.7 5.7 5.7 0.0 6.3 6.3 6.3
Change Traffic Growth in Year New Traffic Growth (%)

CONGESTION

Include Congestion Effects (Y/N) N Road Type Two Lane Road Use Seasonal Roadside Friction 1.00

....

Description	T-M	Section	2A	overlay	14.480 km	
-------------	-----	---------	----	---------	-----------	--

Road Class (Paved/Unpaved) P

Road Length (km)	14.5	Road Width (m)	8.3
One Shoulder Width (m)	3.0	Effective Number of Lanes	2.0
Rise & Fall (m/km)	1.8	Curvature (deg/km)	4.1
Superelevation (%)	0.0	(103, 1111,	***

ENVIRONMENT

Altitude (m) 202 Rainfall (m/month) 0.0110

SURFACE Surface Type 7

Thickness: New Surfacing Layers (mm) 50 Old Surfacing Layers (mm) 180

BASE/SUBGRADE Base Type 1 Subgrade CBR(%) 2
If Cement Stabilized Base: Thickness of Base Layers (mm) 0
Resilient Modulus of Soil Cement (GPa) 0

STRENGTH Structural Number 2.28 Benkelman Beam Deflection (mm)

CONDITION Roughness (IRI) 4.9 Construction Fault Code 1
Area All Cracks (%) 11.9 Wide Cracks (%) 0.7 Potholes (%) 0.400
Ravelled (%) 0.0 Rut Depth (mm) 30 Rut Depth St. Deviation (mm) 20

HISTORY Surfacing Age (y) 7 Construction Age (y) 20 For Old Surfacing Layers, Previous Area of Wide Cracks (%) 20

DETERIORATION FACTORS
Cracking Initiation 1.00
Ravelling Initiation 1.00
Pothole Progression 1.00
Roughness-age Term 0.70
Cracking Progression 1.00
Rut Depth Progression 1.50
Roughness Progression 1.50

TRAFFIC

	Car	Pickup	Bus	Light Truck	Medium Truck	Heavy Truck	Articulated Truck
Average Daily Traffic Traffic Growth (%)	939 5.7	100 5.7		-		95 6.3	91 6.3

Change Traffic Growth in Year New Traffic Growth (%)

CONGESTION

Include Congestion Effects (Y/N) N Road Type Two Lane Road Use Seasonal Roadside Friction 1.00

Description T-M Se	ection 2B recon	49.148 km	
Road Class (Paved/Unpa	aved) P		
GEOMETRY Road Length (km) One Shoulder Width Rise & Fall (m/km) Superelevation (%)	49.1 (m) 3.0 1.8 0.0	Road Width (m) Effective Number of Lanes Curvature (deg/km)	9.0 2.0 4.1
ENVIRONMENT Altitude (m)	202	Rainfall (m/month)	0.0110
	e Type 7 .cing Layers (mm	a) 50 Old Surfacing Layers	(mm) 180
BASE/SUBGRADE Base T If Cement Stabilized	Base: Thicknes	Subgrade C s of Base Layers (mm) t Modulus of Soil Cement (G	0
STRENGTH Structural	Number 1.94 B	enkelman Beam Deflection (m	m) .
CONDITION Roughness (Area All Cracks (%) Ravelled (%) 0.0 R	11.9 Wide Cr	Construction Faul acks (%) 0.7 Potholes (% 30 Rut Depth St. Deviation) 0.400
HISTORY Surfacing A For Old Sur	ge (y) 7 Const facing Layers, 1	truction Age (y) 20 Previous Area of Wide Crack	s (%) 20
DETERIORATION FACTORS Cracking Initiation Ravelling Initiation Pothole Progression	1.00 1.00 1.00	Roughness-age Term Cracking Progression Rut Depth Progression Roughness Progression	n 1.50
TRAFFIC			
	Car Pickup	Light Medium Heavy Arti Bus Truck Truck Truck Tr	iculated cuck
Average Daily Traffic Traffic Growth (%)	939 100 5.7 5.7	62 0 260 95 5.7 0.0 6.3 6.3	91 5.3

New Traffic Growth (%)

CONGESTION

Include Congestion Effects (Y/N) N Road Type Two Lane Road Use Seasonal

Change Traffic Growth in Year

Roadside Friction 1.00

Description	T-M	Section	3A	overlay	14.277	km	
-------------	-----	---------	----	---------	--------	----	--

Road Class (Paved/Unpaved) P

GEOMETRY

Road Length (km)	14.3	Road Width (m)	9.1
One Shoulder Width (m)	3.0	Effective Number of Lanes	2.0
Rise & Fall (m/km)	1.8	Curvature (deg/km)	7.7
Superelevation (%)	0.0	•	

ENVIRONMENT

Altitude (m) 202 Rainfall (m/month) 0.0110

SURFACE Surface Type 7

Thickness: New Surfacing Layers (mm) 50 Old Surfacing Layers (mm) 180

BASE/SUBGRADE Base Type 1 Subgrade CBR(%) 4
If Cement Stabilized Base: Thickness of Base Layers (mm) 0
Resilient Modulus of Soil Cement (GPa) 0

STRENGTH Structural Number 2.52 Benkelman Beam Deflection (mm)

CONDITION Roughness (IRI) 6.6 Construction Fault Code 1
Area All Cracks (%) 14.2 Wide Cracks (%) 1.4 Potholes (%) 1.200
Ravelled (%) 0.0 Rut Depth (mm) 32 Rut Depth St. Deviation (mm) 16

HISTORY Surfacing Age (y) 7 Construction Age (y) 20
For Old Surfacing Layers, Previous Area of Wide Cracks (%) 20

DETERIORATION FACTORS		Roughness-age Term	0.70
Cracking Initiation	1.00	Cracking Progression	1.00
Ravelling Initiation	1.00	Rut Depth Progression	1.50
Pothole Progression	1.00	Roughness Progression	1.50

TRAFFIC

Light Medium Heavy Articulated Car Pickup Bus Truck Truck Truck Average Daily Traffic 1133 175 112 0 334 168 155 Traffic Growth (%) 5.7 5.**7** 5.7 0.0 6.3 6.3 6.3

CONGESTION

Include Congestion Effects (Y/N) N
Road Type Two Lane
Road Use Seasonal
Roadside Friction 1.00

Description	T-M	Section	3B	recon	54.760	km

Road Class (Paved/Unpaved) P

GEOMETRY

Road Length (km)	54.8	Road Width (m)	9.0
One Shoulder Width (m)	3.0	Effective Number of Lanes	2.0
Rise & Fall (m/km)	1.8	Curvature (deg/km)	7.7
Superelevation (%)	0.0	. ,	• • •

ENVIRONMENT

Altitude (m) 202 Rainfall (m/month) 0.0110

SURFACE Surface Type 7

Thickness: New Surfacing Layers (mm) 50 Old Surfacing Layers (mm) 180

BASE/SUBGRADE Base Type 1 Subgrade CBR(%) 4
If Cement Stabilized Base: Thickness of Base Layers (mm) 0
Resilient Modulus of Soil Cement (GPa) 0

STRENGTH Structural Number 2.22 Benkelman Beam Deflection (mm)

CONDITION Roughness (IRI) 7.0 Construction Fault Code 1
Area All Cracks (%) 14.2 Wide Cracks (%) 1.4 Potholes (%) 1.200
Ravelled (%) 0.0 Rut Depth (mm) 32 Rut Depth St. Deviation (mm) 16

HISTORY Surfacing Age (y) 7 Construction Age (y) 20
For Old Surfacing Layers, Previous Area of Wide Cracks (%) 20

DETERIORATION FACTORS

Cracking Initiation 1.00

Ravelling Initiation 1.00

Pothole Progression 1.00

Roughness-age Term 0.70

Cracking Progression 1.00

Rut Depth Progression 1.50

Roughness Progression 1.50

TRAFFIC

Light Medium Heavy Articulated Car Pickup Bus Truck Truck Truck Average Daily Traffic 1133 175 112 0 334 155 Traffic Growth (%) 5.7 5.**7** 5.7 0.0 6.3 6.3 6.3

Change Traffic Growth in Year New Traffic Growth (%)

CONGESTION

Include Congestion Effects (Y/N) N Road Type Two Lane Road Use Seasonal Roadside Friction 1.00

REQUIRED VEHICLE CHARACTERISTICS

	Description	Required Da	ata for	Turkmenistan
--	-------------	-------------	---------	--------------

BASIC CHARACTERISTCS	Car	Pickup	Bus	Light Truck		Heavy Truck	
Gross Vehicle Weight (t) ESAl Factor per Veh.(E4) Number of Axles Number of Tires Number of Passengers		0.000 2 4	2 6	0.100 2 6	0.960 2 6	17.000 1.830 3 10 0.00	32.400 2.920 5 18 0.00
VEHICLE UTILIZATION DATA							
Service Life (yr) Hours Driven per Year Km Driven per Year Depreciation Code Utilization Code Annual Interest Rate (%)	17500 2 1	12.0 750 37500 2 3 15.00		1300 0 2 3	1250	1500	1750
ECONOMIC UNIT COSTS							
New Vehicle Price (C) New Tire Price (C) Maintenance Labor (C/hr) Crew Cost (C/crew-hr) Passenger Time (C/pa-hr) Cargo Time (C/veh-hr)	0.00	10000 50.0 0.59 0.49 0.18 0.00	180.0 0.59 0.74 0.18	275.0 0.59 3.00	180.0 0.59 0.74	0.59 0.74	0.98
	Gas/Petrol Price (C/lt) Diesel Price (C/lt) Lubricants Price (C/lt)				0.25 0.22 1.20		

Note: C is the input currency defined in the Analysis Control Data

OPTIONAL VEHICLE CHARACTERISTICS

Description Optional Data for Turkmenistan

VEHICLE PARAMETERS	Car	Pickup	Bus	Light Truck	Medium Truck	-	Artic. Truck
Payload (Tons)	0.35	0.60	3.50	2.80	2.00	2.50	11.00
Aerodynamic Drag Coeff.	0.450	0.460			0.850		
Projected Frontal Area	1.800		6.300	-			
Driving Power (Metric HP)	41.0	40.0			67.0		
Braking Power (Metric HP)	20.0	32.0	208.0		147.0		
Paved Desired Spd (km/h)	98.30	94.90	93.40	81.60			
Unpaved Desired Sp (km/h)	82.20	76.30	69.40	71.90			
Energy Efficiency Factor	0.95	0.90		0.95	1.00	1.00	
Hourly Utilization Ratio	0.40	0.50					0.65
Calibrated Eng Spd (rpm)	3500.0	3300.0	2300.0		1800.0	1800.0	
Weibull Shape Parameter		-					
Max Avg Rect Vel (mm/s)		•					•
Width Parameter for Spd			•				
Fuel Adjustment Factor	1.160	1.160	1.150		1:150	1.150	1.150
FRATIOO (Paved)		•		•	•		
FRATIOO (Unpaved)	-					•	
FRATIO1 (Paved)							
FRATIO1 (Unpaved)				•			
Recap Cost Ratio (%)			30.0		30.0	30.0	30.0
Tire Rubber Vol (cu dm)	•		7.600		7.600	7.300	8.390
Base Number of Retreads			1.000		1.000	1.000	1.000
Tread Wear, COTC			0.164		0.164	0.164	0.164
Tread Wear, CTCTE		•	12.780		12.780	12.780	12.780
Spare Parts, COSP	•	•	•				•
Spare Parts, CSPQI							•
Spare Parts, QIOSP				•	•	•	
Labor Hours, COLH							•
Labor Hours, CLHPC					•	•	
Labor Hours, CLHQI	•	•		•	•	•	

OPERATIONS UNIT COSTS

Description Tedjen to Mary Rehabilitation

Operation		Economic Unit Cost
Grading (Currency per km of road graded) Spot Regraveling (Currency per cu m) Gravel Resurfacing (Currency per cu m) Unpaved Routine Maintenance (Currency per km per yr)	0.0 0.00 0.00 0	0.0 0.00 0.00 0
Patching (Currency per sq m) Resealing (Currency per sq m) Overlay (Currency per sq m) Reconstruction (Currency per sq m) Paved Routine Maintenance (Currency per km per yr)	27.06 1.47 17.16 51.66 1294	23.00 1.25 14.58 43.91 1100
Construction (Thousands currency per km)	0.0	0.0

Note: The input currency is defined in the Analysis Control Data

DEFINITION OF STRATEGIES

Description	T-M Reconstruction sections	
STRATEGY 1: Start in Year:	Do Minimum 1998 Policy: T-M Do Minimum - initial 2007 T-M Do Minimum - future	(Pav:TMS1IN) (Pav:TMS1FU) ()
STRATEGY 2: Start in Year:	Reconstruction 1998/99 1998 Policy: T-M Initial reconstruction 1999 T-M Reconstruction - future	
STRATEGY 3: Start in Year:	Not Used 1998 Policy: Reseal (12mm, 20%), Patching	(Pav:STS_20) () ()
STRATEGY 4: Start in Year:	Not used 1998 Policy: Reseal (12mm,20%), Patching	(Pav:STS_20) () ()
STRATEGY 5: Start in Year:	Not Used 1998 Policy: Reseal (12mm,20%), Patching	(Pav:STS_20) () ()

DEFINITION OF STRATEGIES

Description T-M Overlay sections STRATEGY 1: Do Minimum Start in Year: 1998 Policy: T-M Do Minimum - initial (Pav:TMS1IN) 2007 T-M Do Minimum - future (Pav:TMS1FU)) STRATEGY 2: Overlay in 1998/99 Start in Year: 1998 Policy: T-M Initial Overlay (Pav:TMS20) T-M Overlay - future (Pav:TMS30))) STRATEGY 3: Not Used Start in Year: 1998 Policy: Reseal (12mm, 20%), Patching (Pav:STS 20))) STRATEGY 4: Not used Start in Year: 1998 Policy: Reseal (12mm, 20%), Patching (Pav:STS_20) STRATEGY 5: Not Used Start in Year: 1998 Policy: Reseal (12mm, 20%), Patching (Pav:STS 20)

Description T-M Do Minimum

Yes/No	o		
Y	ROUTINE MAI Features:	NTENANCE Cost factor 1.00	
Y	PATCHING Scheduled: Responsive: Features:	(Scheduled or Responsive) R Area to be patched (m2/km/y) Percent of pothole area to be patched Maximum applicable area (m2/km/y) Cost factor Last applicable year Maximum applicable roughness (IRI)	0.0 100.0 1.00
N	RESEALING Scheduled: Responsive: Features:	(Scheduled or Responsive) R Resealing interval (y) Maximum allowable total damaged area (%) Minimum applicable resealing interval (y) Maximum applicable resealing interval (y) Cost factor Resealing type Resealing strength coefficient	0 30.0 1.00 3 0.25
		Resealing thickness (mm) Last applicable year Maximum applicable roughness (IRI)	15.0
N	OVERLAY Scheduled: Responsive:	(Scheduled or Responsive) R Overlay interval (y) Maximum allowable roughness (IRI) Minimum applicable overlay interval (y) Maximum applicable overlay interval (y)	0 11.0
	Features:	Cost factor Overlay type Overlay strength coefficient Overlay thickness (mm) Last applicable year Roughness after overlay (IRI)	1.00 2 0.10 50.0
Y	RECONSTRUCTI Scheduled: Responsive:	ON (Scheduled or Responsive) S Reconstruction Interval (IRI) Maximum allowable roughness (IRI) Minimum applicable reconst. interval (y) Maximum applicable reconst. interval (y)	9 9.0
	Features:	Cost factor New structural number Surface type Total new surfacing layer thickness (mm) Base type If cement stabilized base: Base layer thickness (mm) Resilient modulus of soil cement (GPA) Construction fault code Last applicable year Roughness after reconstruction (IRI)	1.00 6.00 2 75.0 1 0.0 0

Description T-M Do Minimum - initial

Yes/N	10		
Y	ROUTINE MA	INTENANCE	
	Features:	Cost factor 1.00	
Y	PATCHING	(Scheduled or Responsive) R	
	Scheduled:	Area to be patched (m2/km/y)	0 0
	Responsive:	Percent of pothole area to be patched	0.0 100.0
		Maximum applicable area (m2/km/y)	100.0
	Features:	Cost factor	1.00
		Last applicable year	1.00
		Maximum applicable roughness (IRI)	
N	RESEALING	(Scheduled or Responsive) R	
	Scheduled:	Resealing interval (y)	0
	Responsive:	Maximum allowable total damaged area (%)	30.0
		Minimum applicable resealing interval (y)	
		Maximum applicable resealing interval (v)	
	Features:	Cost factor	1.00
		Resealing type	3
		Resealing strength coefficient	0.25
		Resealing thickness (mm) Last applicable year	15.0
		Maximum applicable roughness (IRI)	
		realization applicable roughness (IRI)	•
N	OVERLAY	(Scheduled or Responsive) R	
	Scheduled:	Overlay interval (y)	0
	Responsive:	Maximum allowable roughness (IRI)	11.0
		Minimum applicable overlay interval (y)	
		Maximum applicable overlay interval (v)	
	Features:	Cost factor	1.00
		Overlay type	2
		Overlay strength coefficient	0.10
		Overlay thickness (mm) Last applicable year	50.0
		Roughness after overlay (IRI)	
			•
N	RECONSTRUCTI	· · · · · · · · · · · · · · · · · · ·	
	Scheduled:	Reconstruction Interval (IRI)	9
	Responsive:	Maximum allowable roughness (IRI)	11.0
		Minimum applicable reconst. interval (y)	
	Features:	Maximum applicable reconst. interval (y) Cost factor	
	reactics.	New structural number	1.00
		Surface type	6.00
		Total new surfacing layer thickness (mm)	2
		Base type	75.0 1
		If cement stabilized base:	Τ.
		Base layer thickness (mm)	0.0
		Resilient modulus of soil cement (GPA)	0
		Construction fault code	0
		Last applicable year	
		Roughness after reconstruction (IRI)	•

Descri	iption T-	M Do Minimum - future
Yes/No Y	ROUTINE MAIN Features:	
Y	PATCHING Scheduled: Responsive: Features:	
N	RESEALING Scheduled: Responsive: Features:	(Scheduled or Responsive) R Resealing interval (y) Maximum allowable total damaged area (%) Minimum applicable resealing interval (y) Maximum applicable resealing interval (y) Cost factor Resealing type Resealing strength coefficient Resealing thickness (mm) Last applicable year Maximum applicable roughness (IRI)
N	OVERLAY	(Scheduled or Responsive) R

		Maximum applicable roughness (IRI)	•
N	OVERLAY	(Scheduled or Responsive) R	
	Scheduled:	Overlay interval (y)	0
	Responsive:	Maximum allowable roughness (IRI)	11.0
	_	Minimum applicable overlay interval (y) Maximum applicable overlay interval (y)	
	Features:	Cost factor	1 00
	reacules:	·	1.00
		Overlay type	2
		Overlay strength coefficient	0.10
		Overlay thickness (mm)	50.0
		Last applicable year	
		Roughness after overlay (IRI)	

		Roughness after overlay (IRI)	•
Y		ON (Scheduled or Responsive) S	
	Scheduled:	Reconstruction Interval (IRI)	8
	Responsive:	Maximum allowable roughness (IRI)	11.0
		Minimum applicable reconst. interval (y)	
		Maximum applicable reconst. interval (y)	
	Features:	Cost factor	1.00

New structural number

Surface type	2
Total new surfacing layer thickness (mm	n) 75.0
Base type	1
If cement stabilized base:	
Base layer thickness (mm)	0.0
Resilient modulus of soil cement (GF	PA) 0
Construction fault code	0
Last applicable year	
Roughness after reconstruction (IRI)	•

0.0

1.00

30.0

1.00 3 0.25 15.0

6.00

100.0

Description T-M Initial Overlay

Descr	iption T-	M Initial Overlay					
Yes/No	0						
Ÿ		ROUTINE MAINTENANCE					
	Features:	Cost factor 1.00					
Y	PATCHING	(Scheduled or Responsive) R					
	Scheduled:	Area to be patched (m2/km/y)	0.0				
	Responsive:	Percent of pothole area to be patched	100.0				
	Features:	Maximum applicable area (m2/km/y) Cost factor					
	reactics.	Last applicable year	1.00				
		Maximum applicable roughness (IRI)					
Y	RESEALING	(Scheduled or Responsive) R					
	Scheduled:	Resealing interval (y)	12				
	Responsive:	Maximum allowable total damaged area (%)	30.0				
		Minimum applicable resealing interval (y)					
	 .	Maximum applicable resealing interval (y)					
	Features:	Cost factor	1.00				
		Resealing type	3				
		Resealing strength coefficient Resealing thickness (mm)	0.25 15.0				
		Last applicable year	15.0				
		Maximum applicable roughness (IRI)	•				
Y	OVERLAY	(Scheduled or Responsive) S					
	Scheduled:	Overlay interval (y)	1				
	Responsive:	Maximum allowable roughness (IRI)	6.0				
		Minimum applicable overlay interval (y)					
	Features:	Maximum applicable overlay interval (y) Cost factor	1 00				
	roacares.	Overlay type	1.00 2				
		Overlay strength coefficient	0.40				
		Overlay thickness (mm)	40.0				
		Last applicable year					
		Roughness after overlay (IRI)	•				
N	RECONSTRUCTI	(=====================================					
	Scheduled:	Reconstruction Interval (IRI)	0				
	Responsive:	Maximum allowable roughness (IRI)	7.0				
		Minimum applicable reconst. interval (y) Maximum applicable reconst. interval (y)	10				
	Features:	Cost factor	1.00				
		New structural number	5.00				
		Surface type	2				
		Total new surfacing layer thickness (mm)	200.0				
		Base type	1				
		If cement stabilized base:					
		Base layer thickness (mm) Resilient modulus of soil cement (GPA)	0.0				
		Construction fault code	0				

Construction fault code Last applicable year

Roughness after reconstruction (IRI)

PAVED MAINTENANCE POLICY ______

Descri	iption T-	M Overlay - future		
Yes/No	,			
Y				
	Features:	Cost factor 1.00		
Y	PATCHING	(Scheduled or Responsive) R		
	Scheduled:	Area to be patched (m2/km/y)	0.0	
	Responsive:	Percent of pothole area to be patched	100.0	
	Features:	Maximum applicable area (m2/km/y) Cost factor	1 00	
	reacures.	Last applicable year	1.00	
		Maximum applicable roughness (IRI)		
		,	•	
Y	RESEALING	(Scheduled or Responsive) R		
	Scheduled:	Resealing interval (y)	12	
	Responsive:	Maximum allowable total damaged area (%)	30.0	
		Minimum applicable resealing interval (y)		
	Features:	Maximum applicable resealing interval (y) Cost factor	1.00	
	reacures.	Resealing type	3	
		Resealing strength coefficient	0.25	
		Resealing thickness (mm)	15.0	
		Last applicable year		
		Maximum applicable roughness (IRI)	•	
Y	OVERLAY	(Cabadulad au Damanaina)		
1	Scheduled:	(Scheduled or Responsive) S Overlay interval (y)	9	
	Responsive:	Maximum allowable roughness (IRI)	5.0	
		Minimum applicable overlay interval (y)	3.0	
		Maximum applicable overlay interval (y)		
	Features:	Cost factor	1.00	
		Overlay type	2	
		Overlay strength coefficient	0.40	
		Overlay thickness (mm)	40.0	
		Last applicable year Roughness after overlay (IRI)		
		Roughness areer overlay (IRI)	•	
N	RECONSTRUCTI	ON (Scheduled or Responsive) R		
		Reconstruction Interval (IRI)	0	
	Responsive:	Maximum allowable roughness (IRI)	0.0	
		Minimum applicable reconst. interval (y)		
	To o to one o	Maximum applicable reconst. interval (y)		
	Features:	Cost factor New structural number	1.00	
		Surface type	0.00	
		Total new surfacing layer thickness (mm)	0.0	
		Base type	0.0	
		If cement stabilized base:	-	
		Base layer thickness (mm)	0.0	
		Resilient modulus of soil cement (GPA)	0	
		Construction fault code	0	

Construction fault code

Roughness after reconstruction (IRI)

Last applicable year

0

Description T-M Initial reconstruction

	_		
Yes/N	Io		
Y	ROUTINE MAI	INTENANCE	
	Features:	Cost factor 1.00	
Y	PATCHING	(Scheduled or Responsive) R	
	Scheduled:	Area to be patched (m2/km/y)	0.0
	Responsive:		100.0
		Maximum applicable area (m2/km/y)	
	Features:	Cost factor	1.00
		Last applicable year	
		Maximum applicable roughness (IRI)	
Y	RESEALING	(Scheduled or Responsive) R	
	Scheduled:	Resealing interval (y)	12
	Responsive:	Maximum allowable total damaged area (%)	30.0
		Minimum applicable resealing interval (y)	
	Doobuus	Maximum applicable resealing interval (y)	
	Features:	Cost factor	1.00
		Resealing type	3
		Resealing strength coefficient	0.25
		Resealing thickness (mm) Last applicable year	15.0
		Maximum applicable roughness (IRI)	
		ridatimum applicable lougimess (IRI)	•
Y	OVERLAY	(Scheduled or Responsive) R	
	Scheduled:	Overlay interval (y)	1
	Responsive:	Maximum allowable roughness (IRI)	5.0
		Minimum applicable overlay interval (y)	5.0
		Maximum applicable overlay interval (y)	
	Features:	Cost factor	1.00
		Overlay type	2
		Overlay strength coefficient	0.40
		Overlay thickness (mm)	40.0
		Last applicable year	
		Roughness after overlay (IRI)	•
Y	RECONSTRUCTI	ON (Calcadal ad a part)	
1	Scheduled:	· · · · · · · · · · · · · · · · · · ·	
	Responsive:	Reconstruction Interval (IRI)	1
	Responsive.	Maximum allowable roughness (IRI)	6.0
		Minimum applicable reconst. interval (y) Maximum applicable reconst. interval (y)	20
	Features:	Cost factor	1 00
		New structural number	1.00 6.00
		Surface type	
		Total new surfacing layer thickness (mm)	2 200.0
		Base type	200.0
		If cement stabilized base:	_
		Base layer thickness (mm)	0.0
		Resilient modulus of soil cement (GPA)	0.0
		Construction fault code	0
		Last applicable year	•
		Roughness after reconstruction (IRI)	

s/N	0		
Y	ROUTINE MAI	NTENANCE	
	Features:	Cost factor 1.00	
Y	PATCHING	(Scheduled or Responsive) R	
	Scheduled:	Area to be patched (m2/km/y)	С
	Responsive:	Percent of pothole area to be patched Maximum applicable area (m2/km/y)	100
	Features:	Cost factor	1.
		Last applicable year	
		Maximum applicable roughness (IRI)	
Y	RESEALING	(Scheduled or Responsive) R	
	Scheduled:	Resealing interval (y)	
	Responsive:	Maximum allowable total damaged area (%) Minimum applicable resealing interval (y)	30
	 .	Maximum applicable resealing interval (y)	
	Features:	Cost factor	1.
		Resealing type	
		Resealing strength coefficient	0.
		Resealing thickness (mm) Last applicable year	15
		Maximum applicable roughness (IRI)	
Y	OVEDIAN		
1	OVERLAY Scheduled:	(Scheduled or Responsive) R	
	Responsive:	Overlay interval (y) Maximum allowable roughness (IRI)	-
	Responsive.	Minimum applicable overlay interval (y)	5
		Maximum applicable overlay interval (y)	
	Features:	Cost factor	1.0
		Overlay type	٠.٠
		Overlay strength coefficient	0.4
		Overlay thickness (mm)	40.
		Last applicable year	
		Roughness after overlay (IRI)	
N	RECONSTRUCTI	ON (Scheduled or Responsive) R	
	Scheduled:	Reconstruction Interval (IRI)	
	Responsive:	Maximum allowable roughness (IRI)	0.
		Minimum applicable reconst. interval (y)	
	_	Maximum applicable reconst. interval (y)	
	Features:	Cost factor	1.0
		New structural number	0.0
		Surface type	
		Total new surfacing layer thickness (mm)	0.
		Base type	
		If cement stabilized base:	

Base layer thickness (mm)

Roughness after reconstruction (IRI)

Construction fault code

Last applicable year

Resilient modulus of soil cement (GPA)

0.0

0

0

APPENDIX E

STRATEGY 1 - DO MINIMUM HDM OUTPUT COST DATA

Table E.1 COSTS OF CAPITAL INVESTMENT - DO MINIMUM

***			Capital	Costs (milli	ons US \$)							
Year		Section										
	1A	1 B	2A	2B	3A	3B	Total					
1998	0.000	0.000	0.000	0.000	0.000	0.000	0.000					
1999	0.000	0.000	0.000	0.000	0.000	0.000	0.000					
2000	0.000	0.000	0.000	0.000	0.000	0.000	0.000					
2001	0.000	0.000	0.000	0.000	0.000	0.000	0.000					
2002	0.000	0.000	0.000	0.000	0.000	0.000	0.000					
2003	0.000	0.000	0.000	0.000	0.000	0.000	0.000					
2004	0.000	0.000	0.000	0.000	0.000	0.000	0.000					
2005	0.000	0.000	0.000	0.000	0.000	0.000	0.000					
2006	0.000	0.000	0.000	0.000	0.000	0.000	0.000					
2007	0.876	3.162	5.285	19.404	5.714	21.656	56.097					
2008	0.000	0.000	0.000	0.000	0.000	0.000	0.000					
2009	0.000	0.000	0.000	0.000	0.000	0.000	0.000					
2010	0.000	0.000	0.000	0.000	0.000	0.000	0.000					
2011	0.000	0.000	0.000	0.000	0.000	0.000	0.000					
2012	0.000	0.000	0.000	0.000	0.000	0.000	0.000					
2013	0.000	0.000	0.000	0.000	0.000	0.000	0.000					
2014	0.000	0.000	0.000	0.000	0.000	0.000	0.000					
							0.000					

Source: Consultants

Table E.2 COSTS OF RECURRENT MAINTENANCE - DO MINIMUM

			Recurren	t Costs (mill	ions US \$)							
Year		Section										
	1A	1B	2A	2B	3A	3B	Total					
1998	0.002	0.009	0.027	0.096	0.053	0.200	0.387					
1999	0.002	0.009	0.016	0.054	0.016	0.060	0.157					
2000	0.002	0.009	0.017	0.057	0.016	0.060	0.161					
2001	0.002	0.009	0.017	0.059	0.017	0.064	0.168					
2002	0.002	0.009	0.018	0.062	0.017	0.066	0.174					
2003	0.002	0.009	0.018	0.064	0.018	0.069	0.180					
2004	0.002	0.009	0.019	0.066	0.018	0.071	0.185					
2005	0.002	0.010	0.019	0.068	0.019	0.073	0.191					
2006	0.002	0.010	0.020	0.070	0.019	0.074	0.195					
2007	0.002	0.009	0.016	0.054	0.016	0.060	0.157					
2008	0.002	0.009	0.016	0.054	0.016	0.060	0.157					
2009	0.002	0.009	0.016	0.054	0.016	0.060	0.157					
2010	0.002	0.009	0.016	0.054	0.016	0.060	0.157					
2011	0.002	0.009	0.016	0.054	0.016	0.060	0.157					
2012	0.002	0.009	0.016	0.054	0.016	0.060	0.157					
2013	0.002	0.009	0.016	0.054	0.016	0.060	0.157					
2014	0.002	0.009	0.016	0.054	0.016	0.060	0.157					

Source: Consultants

Table E.3 VEHICLE OPERATING COSTS - DO MINIMUM

		Veh	icle Operat	ing Costs (m	illions US \$	5)						
Year		Section										
	1A	1B	2A	2B	3A	3B	Total					
							-					
1998	0.532	2.417	2.233	7.730	3.543	13.801	30.256					
1999	0.568	2.580	2.400	8.368	3.744	14.610	32.270					
2000	0.606	2.755	2.604	9.149	4.035	15.784	34.933					
2001	0.648	2.947	2.844	10.059	4.364	17.133	37.995					
2002	0.693	3.158	3.128	11.112	4.738	18.712	41.541					
2003	0.744	3.392	3.450	12.307	5.165	20.602	45.660					
2004	0.800	3.652	3.818	13.648	5.658	22.881	50.457					
2005	0.861	3.936	4.234	14.896	6.226	25.085	55.238					
2006	0.926	4.239	4.644	15.896	6.866	26.818	59.389					
2007	0.996	4.563	4.980	16.860	7.425	28.451	63.275					
2008	0.896	3.773	3.653	12.370	5.460	20.925	47.077					
2009	0.953	4.011	3.885	13.157	5.808	22.258	50.072					
2010	1.011	4.259	4.127	13.974	6.170	23.644	53.185					
2011	1.074	4.522	4.383	14.840	6.554	25.114	56.487					
2012	1.140	4.801	4.654	15.760	6.961	26.675	59.991					
2013	1.211	5.098	4.943	16.737	7.393	28.333	63.715					
2014	1.286	5.413	5.249	17.774	7.853	30.093	67.668					
						33.053	57.000					

Source: Consultants

Table E.4 TRAVEL TIME COSTS - DO MINIMUM

Ì			Travel Tim	e Costs (mil	lions US \$)					
Year	Section									
	1A	1B	2A	2B	3A	3B	Total			
1998	0.015	0.067	0.063	0.216	0.098	0.382	0.841			
1999	0.016	0.071	0.067	0.232	0.103	0.403	0.892			
2000	0.017	0.075	0.072	0.253	0.111	0.435	0.963			
2001	0.018	0.080	0.078	0.278	0.120	0.473	1.047			
2002	0.019	0.086	0.086	0.309	0.130	0.518	1.148			
2003	0.020	0.092	0.095	0.345	0.142	0.573	1.267			
2004	0.022	0.099	0.106	0.386	0.156	0.643	1.412			
2005	0.023	0.107	0.119	0.423	0.173	0.710	1.555			
2006	0.025	0.115	0.131	0.451	0.193	0.759	1.674			
2007	0.027	0.123	0.141	0.477	0.209	0.802	1.779			
2008	0.026	0.108	0.105	0.356	0.155	0.596	1.346			
2009	0.027	0.114	0.111	0.376	0.164	0.630	1.422			
2010	0.029	0.120	0.117	0.398	0.174	0.666	1.504			
2011	0.030	0.127	0.124	0.421	0.184	0.705	1.591			
2012	0.032	0.135	0.131	0.445	0.194	0.745	1.682			
2013	0.034	0.142	0.139	0.470	0.206	0.788	1.779			
2014	0.036	0.151	0.147	0.497	0.217	0.833	1.881			
				3,	5.217	0.033	1.501			

Source: Consultants

APPENDIX F

STRATEGY 2 - OVERLAY AND RECONSTRUCTION HDM - OUTPUT COST DATA

Table F.1 COSTS OF CAPITAL INVESTMENT - WITH PROJECT

			Capital	Costs (milli	ons US \$)		
Year				Section			
	1A	1B	2A	2B	3A	3B	Total
1998	0.291	3.177	2.022	17.787	2.196	19.662	45.135
1999	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2001	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2002	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2003	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2004	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2005	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2006	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2007	0.291	0.000	1.755	0.000	1.897	0.000	3.943
2008	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2009	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2010	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2011	0.000	0.000	0.000	0.552	0.000	0.000	0.552
2012	0.000	0.000	0.000	0.000	0.000	0.617	0.617
2013	0.000	0.090	0.000	0.000	0.000	0.000	0.090
2014	0.000	0.000	0.000	0.000	0.000	0.000	0.000
						0.000	0.000

Source: Consultants

Table F.2 COSTS OF RECURRENT MAINTENANCE - WITH PROJECT

		Recurrent Costs (millions US \$)									
Year				Section	· · · · · · · · · · · · · · · · · · ·						
	1A	1B	2A	2B	3A	3B	Total				
1998	0.002	0.009	0.016	0.054	0.016	0.060	0.157				
1999	0.002	0.009	0.016	0.054	0.016	0.060	0.157				
2000	0.002	0.009	0.016	0.054	0.016	0.060	0.157				
2001	0.002	0.009	0.016	0.054	0.016	0.060	0.157				
2002	0.002	0.009	0.016	0.054	0.016	0.060	0.157				
2003	0.002	0.009	0.016	0.054	0.016	0.060	0.157				
2004	0.002	0.009	0.016	0.054	0.016	0.060	0.157				
2005	0.002	0.009	0.016	0.054	0.016	0.060	0.157				
2006	0.002	0.009	0.016	0.054	0.016	0.060	0.157				
2007	0.002	0.009	0.016	0.054	0.016	0.060	0.157				
2008	0.002	0.009	0.016	0.054	0.016	0.060	0.157				
2009	0.002	0.009	0.016	0.054	0.016	0.060	0.157				
2010	0.002	0.009	0.016	0.054	0.016	0.060	0.157				
2011	0.002	0.009	0.016	0.062	0.016	0.060	0.165				
2012	0.002	0.009	0.016	0.054	0.016	0.060	0.157				
2013	0.002	0.010	0.016	0.054	0.016	0.060	0.158				
2014	0.002	0.009	0.016	0.054	0.016	0.060	0.150				
					3.310	5.500	0.157				

Source: Consultants

Table F.3 VEHICLE OPERATING COSTS - WITH PROJECT

		Vel	icle Operat	ing Costs (m	illions US \$	5)						
Year		Section										
	1A	1B	2A	2B	3A	3B	Total					
1998	0.532	2.417	2.233	7.730	3.543	13.801	30.256					
1999	0.533	2.218	2.226	7.268	3.466	12.276	27.987					
2000	0.566	2.358	2.389	7.729	3.707	13.056	29.805					
2001	0.602	2.504	2.559	8.208	3.961	13.867	31.701					
2002	0.641	2.658	2.741	8.716	4.231	14.728	33.715					
2003	0.683	2.822	2.935	9.255	4.520	15.642	35.857					
2004	0.727	2.996	3.145	9.828	4.829	16.612	38.137					
2005	0.775	3.181	3.373	10.435	5.163	17.642	40.569					
2006	0.826	3.377	3.624	11.080	5.526	18.736	43.169					
2007	0.880	3.585	3.903	11.767	5.925	19.898	45.958					
2008	0.901	3.806	3.854	12.497	5.816	21.135	48.009					
2009	0.956	4.041	4.118	13.278	6.203	22.452	51.048					
2010	1.016	4.292	4.399	14.113	6.616	23.860	54.296					
2011	1.078	4.559	4.700	15.043	7.056	25.367	57.803					
2012	1.145	4.845	5.025	16.042	7.529	27.065	61.651					
2013	1.216	5.167	5.379	17.069	8.040	28.868	65.739					
2014	1.291	5.509	5.766	18.164	8.596	30.721	70.047					
ł							, 5.0 17					

Table F.4 TRAVEL TIME COSTS - WITH PROJECT

			Travel Time	Costs (milli	ons US \$)	<u>-</u>						
Year		Section										
	1A	1B	2A	2B	3A	3B	Total					
		}										
1998	0.015	0.067	0.063	0.216	0.098	0.382	0.841					
1999	0.016	0.065	0.064	0.216	0.097	0.362	0.820					
2000	0.017	0.069	0.068	0.228	0.103	0.383	0.868					
2001	0.017	0.073	0.073	0.242	0.109	0.405	0.919					
2002	0.018	0.077	0.077	0.255	0.116	0.428	0.971					
2003	0.020	0.082	0.082	0.270	0.123	0.452	1.029					
2004	0.021	0.086	0.087	0.286	0.131	0.478	1.089					
2005	0.022	0.091	0.092	0.302	0.139	0.506	1.152					
2006	0.023	0.097	0.099	0.319	0.148	0.535	1.221					
2007	0.024	0.102	0.105	0.338	0.158	0.565	1.292					
2008	0.026	0.108	0.107	0.357	0.159	0.598	1.355					
2009	0.027	0.114	0.113	0.378	0.168	0.632	1.432					
2010	0.029	0.121	0.120	0.399	0.178	0.669	1.516					
2011	0.030	0.128	0.127	0.423	0.189	0.708	1.605					
2012	0.032	0.135	0.135	0.423	0.200	0.749	1.698					
2013	0.034	0.143	0.143	0.477	0.200	0.743						
2014	0.036	0.151	0.143	0.501	1	L L	1.798					
	0.050	0.131	0.133	0.301	0.225	0.838	1.904					

Source: Consultants

ENVIRONMENTAL ASSESSMENT

THE PROPERTY OF THE PROPERTY O

CONTENTS

<u>Page</u>

1 INTRODUCTION	1
1.1 PROJECT BACKGROUND AND TERMS OF REFERENCE	1
1.2 SHORT DESCRIPTION OF THE PROJECT ENVIRONMENT	2
1.3 PROPOSED BORROW PITS	3
2 LEGAL AND ADMINISTRATIVE FRAMEWORK	7
2.1 Laws and regulations	7
2.2 CURRENT PLANNING PRACTISE	11
3 ENVIRONMENTAL IMPACTS, AVOIDANCE AND MITIGATION MEASURES	13
3.1 ESTABLISHMENT, SETUP AND OPERATION OF THE WORK SITE	14
3.2 ACTIVITIES WITHIN THE CONSTRUCTION CORRIDOR	15
3.3 MATERIAL EXTRACTION AND TRANSPORT	17
3.4 PROPOSALS FOR ADDITIONAL ENVIRONMENTAL ENHANCEMENT	20
4. RECOMMENDATIONS FOR THE PREPARATION OF TENDER DOCUMENTS	22
4.1 ESTABLISHMENT, SETUP AND OPERATION OF THE WORK SITE (=CONTRACTOR'S YARD)	22
4.2 CONSTRUCTION (= ROAD CORRIDOR AND ADJACENT LAND)	23
4.3 BORROW PITS: SITE PREPARATION AND MATERIAL EXTRACTION	24
4.4 Transport Traffic	24
4.5 TREE PLANTING	25
4.6 SAND DRIFT CONTROL	26
4.7 ROAD SAFETY	28
4.8 MONITORING	28
5 KEY PERMITS	20

APPENDIX 1: List Of People Contacted

APPENDIX 2: Tabular Summary Potential Impacts, Measures And Regulations

APPENDIX 3: Photographs

1 <u>Introduction</u>

1.1 Project background and terms of reference

The planning for the 143 km of existing paved road between Tedjen and Mary (M 37) aims at the improvement of the road surface itself, whereas the layout (alignment, width and gradient) shall mainly remain unchanged. Exceptions to this could be in the two cases where the structural stability of the existing bridges is questionable. Replacements will probably be necessary in the immediate future and they could be constructed either on or off line¹. Given the project frame and the actual state of the road environment (see point 1.2) it can be presumed that within the construction corridor itself there will be *no significant* disturbance of the natural environment such as large scale soil erosion, changes to streams, underground water or interference with animal or plant life. However, according to the national legal and regulatory requirements and also according to EBRD-standards, this in fact does not exclude the need to plan for a number of measures, that would help to avoid construction-related impacts or to keep them to a minimum.

Additionally, adverse environmental impacts may result from the extraction of construction material so that these factors will also have to be included in the environmental considerations.

Thus, the environmental assessment will address the following:

Identification of the most important (potential) consequences of project implementation with respect to environmental pollution human health and safety secondary impacts resulting from the exploitation of borrow pits Review of Turkmen environmental laws and regulations relevant to the project Development of mitigation measures for both, direct and secondary impacts Development of proposals for additional environmental enhancement Development of recommendations for the inclusion in the tender

documents

When this report was prepared, no decision had been taken with regard to the question whether rehabilitation of these bridges would be included in the project or not.

1.2 <u>Description of the project environment</u>

The project area is located in the south-eastern part of the Kara Kum desert. The terrain is generally flat and gently undulating in only a few sections. The ground level lies between 180 and 210 m on average. The road environment between Tedjen and Mary is mainly composed of two types of landscape:

Irrigated, cultivated land in the oases (Tedjen and Mary)
desertic to semi-desertic steppe between road km 75 to 116 with sections
bearing a more or less dense cover of Saxaul (Haloxylon parsicum)

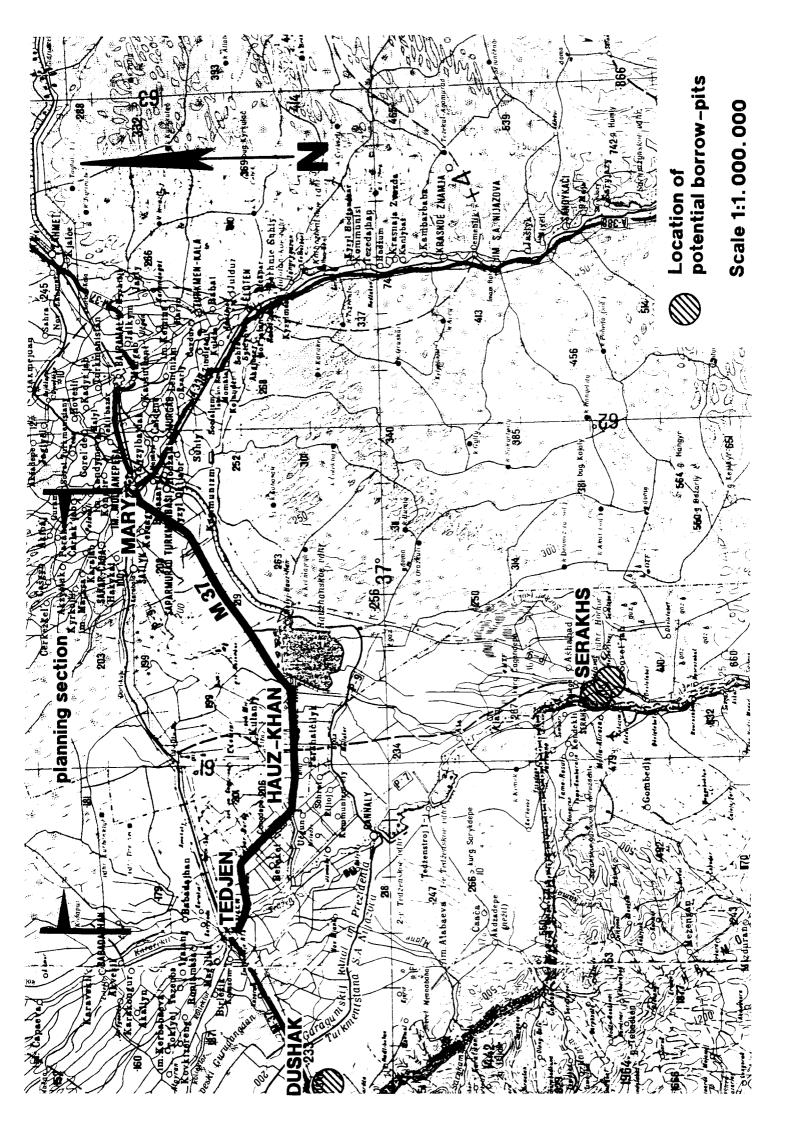
The road crosses a total of 23 water courses, of which only the river Tedjen is a natural one. Almost all of the land in the oases has been (or still is) subject to extensive human interference and uses such as the construction of the gaspipeline, the electricity and telecommunication lines, the construction and maintenance of irrigation and drainage facilities, agriculture, grazing, urban development and last but not least the construction of the road itself. Further, the planning area suffers to a great extent from severe salination of soils, so that significant natural habitats do not remain. Apart of the rows of trees that have been planted or are currently being planted in the immediate vicinity of a number of road sections, the overall impression of the project area is that of a very monotone, deserted landscape.

The *immediate* road environment can be characterized as follows: Beginning at the junction Tedjen / Serakhs a deep and severely eroded drainage channel runs parallel to the southern side of the road, in rather close distances of 10 to 30 m. This channel follows the road on the right side over more than 70 km up to Hauz Khan. For extended length excavated material from this channel has been heaped up to heights of 2 to 3 m alongside the road. In March 1997, during the course of the field investigations many of these heaps, as well as a 20 to 30 m wide strip north to the road, were levelled in preparation for tree planting. These activities are mainly based on a Presidential Decree, that calls for the planting of trees along all of the M 37 between Turkmenbashi and Mary (see also point 3.1).

The initiative for the implementation of these plantations lies with the Etraps Tedjen, Murgab, Niasov and Mary as well as the road maintenance departments (LEO) of Tedjen and Mary.

For most of the 70 km section between Hauz Khan and Mary the former M 37 runs as a narrow paved road at variable distances from the actual M 37, crossing it at several locations.

The height of embankments of the M 37 project road section varies between 1 and 1.5 m with a rather steep slope of 1:1 or 1:1.5 (horizontal : vertical). Vegetation is scarce, but there is actually no evidence of erosion.


1.3 Proposed borrow pits

With reference to the geotechnical investigations three potential sources for construction *materials* have been identified. While the existing borrow pit at Dushak lies at a distance of about 7.5 km from the M 37 and some 50 km southwest of Tedjen, the borrow pits at Serakhs are located at a distance of about 120 km south-west of Mary (see map 1). The present situation at these sites can roughly be described as follows:

Dushak

The first mining operations at Dushak date back to the late 60s. Today this borrow pit is a one of the main sources of materials for industrial and construction uses in the country (coarse gravel with a high sand fraction). Data on the actual area of this mining site are not available. Excavations reach down to 8 m below the surrounding surface but groundwater is not met at this level. As can be seen on pictures 5 and 6 (appendix 3) mining is carried out by electropowered machines.

The existing crushing and sieving plant is <u>directly</u> connected to the main railway line Ashgabad - Mary. Moreover, a narrow paved road exists, which links the borrow site to the M 37. This road is in rather bad condition and partly lined by settlements at distances of about 30 to 50 m on average.

Recultivation of exploited parts is actually not being done at this borrow pit. Topsoil is removed and stored some 500 m away from the present borrow site. However, natural regrowth has produced some sparse herbaceous and grass vegetation in the eldest parts of the borrow pit.

Serakhs

At Serakhs two borrow pits are used by the maintenance department of Turkmenautoellari (LEU) for various construction and maintenance activities:

One borrow pit called 'Khor-Khor' is located about 13 km south-east of Serakhs which is about the same distance from the new railway line. The first mining activities at Khor-Khor date back to the mid 1950s, but more intensive excavations began in 1978. Data on the actual extension of this borrow pit are not available. The material which is encountered below a depth of 1.5 to 1.8 m at Khor-Khor is coarse gravel with a high proportion of sand and sandy loam.

At this site material extraction reaches to 10 to 15 m below ground surface. Small patches of reed at the bottom of the borrow pit indicate moisture, but it is unlikely that groundwater would be met at this level already (see picture 7, Appendix 3). According to the head of the local road construction administration, groundwater level may be expected 15 m below surface level. It is highly likely that actual occasional water influx to the borrow pit would originate from irrigation in the surrounding agricultural lands.

The older, rather shallow parts of the borrow pit are characterized by (uncontrolled) waste dumping (see picture 8). Since no alternative official dump site or organized waste management exist, this situation seems to be officially accepted.

A recultivation plan exists for Khor-Khor, but actually no steps have ever been taken in this regard. The first reason for this is that no suitable machines are locally available for these works. Secondly, most of the top soil is used for the local fabrication of loam-bricks, so that hardly any material remains for recultivation.

In the case of Khor-Khor the only official road that connects the site to the M 37 in direction of Hauz-Khan leads directly through the village of Serahks.

The **second borrow pit at Serakhs** forms part of the higher terrace of the river Tedjen which represents the national border line between Turkmenistan and Iran. Accordingly the site is located within a guarded and fenced border strip where access is restricted.

At this site the first exploitation dates back to 1990. According to information from local staff inundation of the vast floodplain of the river Tedjen between March and May regularly includes the area of the present borrow site. During this period the area of the floodplain is subject to considerable shifts so that the material that is extracted from here consists of very new deposits of gravel with admixtures of sand and loam. Given the natural dynamics within this site there is only very little or no evidence of vegetation.

For this borrow pit no license exists. LEU-staff favour mining at this site since the material is looser and easier to extract than at Khor-Khor.

The distance to the new single line railway which leads south is less than 1 km but there is no provision for material transfer from rail to road. This railway crosses the M 37 west of Hauz Khan at about km 60. According to LEU-staff road traffic in the direction of Hauz-Khan would again have to pass through the village of Serakhs. In the Tedjen direction only a few single houses exist along the paved road on one side at distances of about 30 to 50 m.

2 <u>Legal and administrative framework</u>

The compilation of the relevant legal and administrative framework aims at

- the identification of the national requirements for impact mitigation or other environmental protection measures in road rehabilitation and borrow pit operations
- the provision of a list of key permits and regulatory requirements that are relevant to the present project and the measures that have been proposed.

2.1 <u>Laws and regulations</u>

The Consultant has reviewed the current Environmental laws of Turkmenistan which are compiled in a booklet entitled: 'Environmental Protection and Public Health for The People of Turkmenistan, Collection of Laws for the period 1989 to 1995'. In order to obtain first hand information, representatives of 'Ministerstwo Prirodopolsowanja Ohrana Okruschajuschej Sredi' ('Ministry of Nature Exploitation and Environmental Protection', referred to as 'Ministry of Environment' in the following) were visited. In summary the following laws and regulations will have to be considered:

The 'Turkmen Law for Nature Protection' (12 November 1991) represents a general framework for all National objectives in the area of environmental protection. With regard to the current project 2 sections of this law are relevant. Under section 16 the law determines that for any project with a potential for adverse environmental impacts measures for environmental protection or mitigation measures have to be considered. Section 20 relates to pollution issues in general. It requires effective measures for the protection of groundwater and drinking-water from pollution which may arise from the disposal, storage and processing of waste. Since the law does not give any definition of 'waste' in this context, it is assumed that it includes those waste materials, that commonly result from operations within the contractor's yard and spoil materials from construction activities.

According to article 3 of the 'Turkmen Law On State Ecological Expertise', (June 1995) 'State Ecological Expertise' is compulsory for projects which are expected to be associated with a 'transformation of the natural human

environment'. A supplement to this law was published on 13 November 1996. This paper defines the type of projects which need compulsory 'State Ecological Expertise' as well as the procedures. It also gives a rough concept of the methodology to be applied. Accordingly a project would be appraised from the point of view of the ecological impact on the environment. Based on this appraisal, the Ministry of Environment would approve or reject the project or make approval subject to conditions. However, according to the supplement to the law, the present project of road improvement does not fall under the requirements of the law.

Decree on the Development of Nurseries and Green Spaces in Turkmenistan, November 9th 1992

This Presidential Decree determines, among other things, that within a period of 2 years after publication fruit trees and other decorative trees shall be planted along the M 37 between Turkmenbashi, Ashgabad and Mary. The responsibility for the enforcement of these plantations lie with the Velayats Ahal (Ashgabad) and Mary (Mary), while the Ministry of Environment and the Academy of Agriculture (today Ministry of Agriculture) are in charge of the procurement of planting material.

SNIP-Regulations (= Russian construction norms and rules) and GOST standards (= state standards)

Various lists and publications of the existing official standards that could be relevant in the present study were also reviewed, but many of these documents could not be made available. It can be presumed, however, that these documents (which are all between 15 and 20 years old) would be rather general and broad in their statements, so that no valuable additional findings are expected here.

With respect to environmental issues, the following official regulations would have to be considered when roads are newly built or rehabilitated:

SNIP-Regulations 2.05.02-85

This paper is a former Soviet Union (FSU) <u>Regulation on Road Construction</u>. Actually, these FSU-regulations will be applied until the recently drafted Turkmen SNIP-regulations for the road construction sector will be officially approved².

² According to the Director of the Turkmendorproyekt, the date of official approval of the National Regulations is not yet determined. However, major changes that would affect regulations of environmental concern are not expected.

Environmental issues are dealt with under point 3 of this document (3.1 - 3.18). Most of the statements under this section are very general and do mainly apply to impact avoidance or mitigation on new road projects. Section 3.4 deals with topsoil protection. It specifies the removal and reuse of fertile topsoil from any land that is to be occupied by a new road or temporarily used for construction. Section 3.5 is more specific to that regard and contains detailed information on topsoil protection and qualities that would require special handling / precautions during construction with the intention to preserve fertile soils (namely top-soils with granulometric compositions from clayey to sandy and densities not exceeding 1.4 g/cm³). Point 3.7 makes provisions on the minimization of dust-development in cotton-producing areas. This could be relevant for the road section between Tedjen and Hauz Khan and the time between May and October. Point 3.16 finally states that in unstable locations or in locations of highly sensitive ecological systems, the Project shall develop suitable mitigation measures aimed at the minimization of adverse environmental impacts.

The document does not give any specifications about the handling or storage of harmful substances or any other preventive measures for the protection of groundwater, surface water or soils from pollution during construction / within the contractor's yard, nor does it make reference to other relevant regulations.

Also, standard procedures for the preservation or the protection of trees growing adjacent to a road or the construction site are not specified.

Construction Norms of Turkmenistan CNT 3.02.011-94

These regulations are only *indirectly* linked to the present project, since they mainly refer to the <u>construction of towns and the planning and construction of/in cities</u>, <u>villages and settlements</u>. Under point No. 9 (Environmental Protection) reference is given to the protection and rational use of natural resources (9.1 - 9.4), the protection of atmosphere, water units and soil against pollution (9.5 - 9.7), the protection against noise, vibration, electric and magnetic fields and radiation (9.9 - 9.11) in general terms. Point 9.8 refers to the protection of soils in general and also to the general obligation to preserve top soil and to restore or recultivate borrow pits. The regulation of the microclimate is addressed under point 9.12, where the positive effects of green plants on the human environment are pointed out.

As the aforementioned SNIP-Regulations all statements given in this paper are again non-specific.

BCH 8-89: Regulation on Environmental Protection in Construction, Rehabilitation and Maintenance of Roads

This document includes comprehensive regulations on environmental protection in road construction, rehabilitation or maintenance activities (among others: use of soils, protection of water resources, protection of forests, flora and fauna, use, preparation and storage of road construction machinery and materials, provisional structures, provisional roads, fire protection, borrow pits and material transport, avoidance of dust, protection of soils from pollution, prevention of soil erosion etc.).

The appendices to this document also include standards for:

- the maximum permitted concentrations of toxic substances
- noise control measures
- soil pollution through losses of oil and fuel from construction equipment
- quality standards for surface waters

SNIP III 4-80: Norms for Construction Safety

This document refers to construction activities in general and comprises, among others, detailed regulations on worker's health and safety. With regard to the present project the chapters 2 and 5 may be of relevance (organization of the construction site, the work sites and transport works). It also determines the maximum permissable concentration of toxic substances in the air, which could be relevant, among others, for road marking operations (Appendix 9).

Safety Regulations for Construction, Rehabilitation and Maintenance of Roads 1978 (corresponds to SNIP III A-11-70)

This document is a comprehensive compilation of safety rules for almost all aspects and stages of road construction, e.g. requirements for the technical safety for work with road construction equipment, the construction of dams, the rehabilitation and maintenance of bridges and culverts, loading and unloading operations, operation and maintenance of asphalt plants, work with toxic substances, work in quarries and borrow pits, work with compressors, mobile power plants, operation and maintenance of road construction equipment etc.

GOST 13508-74

This document deals with road marking and describes the requirements and standards of white lining for the various road categories, which is an important aspect of road safety.

Mining licenses

Regularly renewable licences regulate the extension and direction of the progressing mining activities at the borrow pits. These licenses may be issued to different contractors at the same time and would in general allow for the extraction of a fixed volume of material within a certain time frame. Licenses are issued by the respective Hekimlik (Dept. for Construction) and would normally include the obligation for site restoration (without however specifying how such restoration is to be carried out).

2.2 <u>Current planning practise</u>

Actually, the general practice in road planning is such, that Turkmendorproyekt would only inform other official bodies (Ministries, Velayats, Hekimliks, energy and water suppliers, etc.) about the project *on completion* of the design documents. Approval is granted or may be subject to conditions that are, if necessary, incorporated into the final design.

With respect to environmental issues a project would proceed more or less automatically through the permitting agency channels without further suggestions or comments. This statement does also apply to the previous and actual cooperation between Turkmendorproyekt and those bodies that are officially in charge with environmental matters. The process in fact is mainly a formal and not a consultative one.

One example for the current practise is a recent road construction project (45 km of *new* road from Ashgabad-Gaudan to Bandjiran on the Iranian border). The final design documents were handed out to the Ministry of the Environment <u>at the very end</u> of the proceedings. In these documents environmental issues are discussed in one short paragraph with only a few very general statements on the design features of the planned road and the intention to plant trees. Based on this, approval was granted by the Ministry of Environment without any comments within one week.

Conclusions

The existing legislation and regulations do in fact include a general conception of avoiding or minimizing construction-related impacts and also health and safety regulations seem to be adequate. From this point of view and also considering (the relatively few) requirements for the project under consideration it is

assumed, that there are in general sufficient provisions to ensure environmentally sound planning and construction practices which would also meet EBRD-standards for similar road rehabilitation projects. Yet no bodies / institutions or mechanisms have been established, that would pursue the consistent implementation of the full range of existing laws and regulations.

The next project stages will have to specify mechanisms which will ensure the consistent implementation of the steps to take and measures to be carried out.

The following chapter summarizes the legally required environmental protection and safety measures and also contains additional measures for environmental improvement and enhancement, which do largely follow World Bank recommendations for similar road rehabilitation projects.³.

A tabular summary of these measures is given in Appendix 2.

The World Bank 1994; 'Roads and Environment: A Handbook'

3 Environmental impacts, avoidance and mitigation measures

The Consultant undertook two visits to the project road section between Tedjen and Mary and one to the proposed borrow areas at Dushak and Serakhs. Project features were discussed with representatives of Turkmendorproyekt, representatives of the Ministry of Environment, the Ashgabad Ecology Club. The conclusions are as follows:

Environmental impacts

As the project is limited to the repair of the pavement on an existing road *no* significant impacts are to be expected. Possible adverse impacts would be those that are caused by the purely construction related activities, the temporary use of land for the contractor's yard(s) as well as the extraction of construction material from existing borrow pits.

Human Health

As the project will improve the surface and the 'furniture' of an existing road, potential negative impacts on human health would be restricted to the construction period where workers may be exposed to exhaust fumes, noise, dust or deal with potentially harmful substances and materials. Further noise impacts are not considered to be an issue in the present case because outside Tedjen and Mary no settlements exist along the road.

Human Safety

With regard to road users travelling safety will be improved through a smoother road surface and a better road furniture (guard rails, road marking, traffic signs etc.). During construction however, safety could be affected by construction traffic, activities within the contractor's yard and works in borrow pits.

Measures

The measures to be specified as the planning proceeds will thus have to focus on the activities within the contractor's yard(s) and the management of construction works. The concept will have to address aspects like ground and surface water protection, dust control, waste management, materials handling and storage areas, worker's health and safety as well as road safety.

Project-related impacts as well as a *general concept* of suitable mitigation and additional environmental enhancement measures is discussed in some broader terms below (see 3.1 - 3.4). Based on this a set of safeguards will be compiled that need to be built in into the tender documents in order to prepare the implementation of these measures and to ensure, that contractors will follow environmentally sound construction practises (see point 4). Where norms and regulations exist, these will be stated (see tabular summary, Appendix 2).

3.1 Establishment, setup and operation of the work site

Impacts

The <u>location of work facilities</u> is a key environmental issue during the establishment of the construction site. Depending on the site that is chosen, the installation of equipment and storage of materials may cause traffic disruption, noise and dust affecting road users and neighbouring residential areas (the latter could refer to the peripheries of Tedjen or Mary, if a construction camp was installed there). During harvest seasons temporary detours or road closures could create additional problems. <u>Pollution of soils</u>, <u>surface and ground waters</u> could result from equipment cleaning and materials storage and handling. Finally, site establishment could cause the destruction of valuable vegetation.

Mitigation measures

Reasonable siting of the contractor's yard would not exclusively take technical or economical aspects into account but would also consider environmental requirements. Without anticipating further decisions to this regard the following is proposed: The contractor's yard(s) should only be established beyond a minimum distance as defined by existing regulations from the river Tedjen or any irrigation channels, which are important sources of drinking water and fish for the local population. Also, the potential existence of fresh-water wells in the possible area of influence should be considered (see point 4 for further detail). Site selection and preparation shall avoid, as far as possible, the removal of trees or bushes and also the areas with natural growth of Sakxaul (chainage km 75 - 116). Where trees are growing in the immediate vicinity or within the selected site, they should be protected against damage by suitable measures. Also, site preparation should include removal and storage of topsoil.

Depending on the number of workers and the mode of accommodation (i.e. construction camp with containers or other accommodation facilities), provisions will also have to be established for the <u>proper treatment of sewerage and waste</u>.

If not handled properly, storage and handling of hazardous substances such as detergents, bitumen, lubricants, oil, fuels, paint etc. can be considerable sources of groundwater pollution and the pollution of surface water or soil. In order to prevent these impacts a set of <u>binding safety provisions</u> needs to be established. The proper implementation of these regulations shall be ensured by clearly defined responsibilities and compliance to be monitored by an inspector or the construction supervision team.

Also, it must be assumed, that the <u>awareness</u> about the adverse impacts potentially arising from operations within the contractor's yard (and also construction activities in general) will probably be very low among the workers. It is therefore recommended that the construction supervision shall provide some <u>on site training</u> or briefing for the workshop personnel as well as for those operating and maintaining machines and equipment. Alternatively the contractor shall provide a method statement of his proposals.

Another important aspect of contractor responsibility is the <u>restoration of work areas, work depots and material storage sites</u>. As has been mentioned before (see point 2.1), site restoration is compulsory according to local regulations, so that land that has been temporarily used shall be restored to the initial state. This would also include <u>respreading of top soil, removal of all scrap or waste material</u> from the work site. The contractor shall submit a method statement for the establishment, maintenance and restoration of site compounds.

3.2 Activities within the construction corridor

Impacts

While this report was being prepared, the design of technical improvement requirements of the various road sections was still ongoing. Consequently, only very general presumptions can be made with regard to the impacts that could be related to the construction phase, the <u>temporary diversion of traffic</u> or <u>traffic</u> management during construction. Safety of road workers and other road users can be put at risk by <u>inadequate traffic management and work zone controls</u>.

Also, attention should be paid to the existing stands of trees. In some sections planted trees / natural tree vegetation grow very close to the roadside in double or more rows. If suitable protection measures are not provided, <u>destruction of roadside trees</u> is very likely. In the sections between km 75 and 116 the destruction of the natural vegetation could trigger sand drift from the adjacent dunes.

The road has a total of 23 bridges. Most of these will have to be repaired in the medium term, while for 2 urgent replacement has been recommended because of structural instability (see Inception Report, January 1997). The construction of new bridges is expected to require some major earthworks on the sensitive embankments of the streams and, if no further precautions are taken, soil erosion and water pollution could be caused.

Depending on the local soil properties <u>soil compaction</u> may be caused by construction equipment moving around the construction site which may harm the soil's potential for future agricultural use or planting measures.

Finally, <u>abandoned machinery</u> (scrap) and waste materials could disfigure the landscape.

Mitigation measures

With regard to traffic and worker's safety, potential risks and disturbances for local residents can be avoided or mitigated through a well designed <u>traffic management plan</u>. Within settlements, where material transport may disturb local residents, <u>minimization of dust development</u> can be achieved by periodically watering the transport roads and using covered trucks.

As already mentioned, an old paved road runs parallel close to the M 37 in the sections between Hauz Khan and Mary (total length: \approx 70 km). If, for any reason, single lane traffic should not be possible or efficient during construction, the use of the old road should be considered instead of building an additional road for the temporary diversion of traffic. This would minimize the need for land acquisition during construction and restoration of the site after completion of works. As determined by the existing legal requirements and regulations all top soil shall be removed and stored properly before the beginning of any activity outside the road itself.

The actual planning practices in the country do not consider the <u>protection of road side trees</u> in any standardized or systematic manner, so that special precautions should be taken during construction for that purpose. In the sections km 75 to 116 natural growth of *Haloxylon parsicum* (Sakxaoul) does often reach immediately to the shoulders of the road so that construction operations in these sections should be carried out with special precautionary measures.

In order to promote more considered construction operations it is therefore suggested to place the responsibility for the effective protection of roadside-trees with the contractor (i.e. in the contract documentation). The contractor, possibly in cooperation with an inspector (see point 4.7), would instruct all workers on this issue.

In the case that bridges are replaced, the material (reinforced concrete) shall be removed and disposed of properly in suitable locations. Also, careful work procedures are necessary in order to avoid or minimize the risks of erosion or pollution and additional siltation of watercourses.

Wherever possible, <u>processing and reuse of existing materials</u> (pavement material or material from demolished bridges for example) should be considered. This would help to avoid or minimize the need of waste disposal and also reduce adverse impacts potentially resulting from material extraction and transport.

Finally, all land that has been temporarily used for construction or deviation of traffic will have to be <u>restored to the initial state</u>. This shall also include the removal of all machines and waste material from the construction site and the reuse of previously stockpiled topsoil.

3.3 <u>Material extraction and transport</u>

Impacts

Borrow sites in Turkmenistan which provide road building materials have had substantial adverse impacts on soils, water, the natural environment and human health in the past. Although licensing would generally include the requirement to recultivate or protect the borrow site, this doesn't happen in practice. Non-compliance however doesn't have any consequences for contractors, omission is neither pursued nor fined. According to information obtained from the Ecological Club of Ashgabad, uncontrolled waste deposition is the order of the day in many

borrow sites. As mentioned before, waste dumping does in fact take place at Khor-Khor in some older parts of the borrow pit that are located near to a former collective farm and in the direction of the village (see picture 8). Given the location of the borrow pit it is not to be expected, that further project-related mining would induce additional activities to this regard in other parts of the borrow pit

For both cases, the borrow pit at Dushak and also Khor-Khor at Serakhs, further material extraction would not create additional impacts in terms of new quality of impacts to be expected since extensive mined areas already exist. Also, project-related additional material extraction will not disfigure the landscape significantly nor will it lead to considerable losses of valuable vegetation. Provided that material extraction does not exceed the present excavation level (8 m below surface at Dushak and 10 to 15 m at Khor-Khor) no additional impairment of groundwater resources is to be expected.

In the case of the second borrow pit at Serakhs, material extraction takes place in some kind of 'no-man's-land' within the immediate border area. Adverse impacts on the landscape are assessed to be of minor importance since access to the area is severely restricted. Also in the last few years, the regularly recurring floods and the reported high velocity of the river have allowed for impact mitigation by means of natural processes to a considerable extent. In this context, mention should be made of an alleged Iranian dam project on some upper parts of the river. Such a project would surely lead to a complete change of the natural dynamics in all downstream sections of the river. However, since further details of this could not be obtained, further statements to that regard shall be avoided.

Noise and dust development related to material extraction are not expected to create problems since settlements are located in sufficient distances from the potential borrow pits in all three cases.

Noise and dust development resulting from material transport could create problems in the case of the borrow pit at Dushak, since settlements closely line the road connecting the site to the M 37. Also this road is very narrow and in poor condition. Heavily loaded trucks and two way traffic could be expected to worsen the situation and increase disturbance to the neighbouring settlements.

Depending on the direction of transport traffic (Mary or Tedjen) this issue would also have to be considered in the case of the Serakhs borrow pit. Moreover, it is assumed that the existing road network at Serakhs would not allow for the avoidance of the village itself. However, since no figures exist on the expected amount of transport traffic no other detailed statements can presently be given in respect of the nuisances that could result therefrom.

Any evaluation of the quality and dimension of potential environmental impacts that would be related to additional (yet unknown) quantities of material extraction from the proposed borrow sites can only be general in the present cases. The main reason for this is the lack of useful and reliable base-line data. According to impressions from the visual evaluation, purely project-related, additional material extraction would not create serious additional or new impacts on the natural surroundings, animal or plant life, groundwater or landscape in the cases of Dushak and Khor-Khor.

Comparing the physical surroundings and the actual state of the three proposed sites it is assumed, that the borrow site that is located in the floodplain of the river Tedjen would probably bear the highest risk of, however uncertain, adverse environmental impacts. Although no detailed information on the local situation was available, it should be considered, that the ecological sensitivity and value of river ecosystems (which include the natural floodplains) would in general exceed that of adjacent terrestrial habitats. Since figures on necessary volumes of materials are not yet available and also given the fact that the area was not accessible for evaluation, this subject cannot be explored in greater depth. One further argument which adds to this view is that no one could presently estimate the influence of the aforementioned possible dam project in Iran on this complex and sensitive ecosystem.

Measures

With regard to <u>site selection</u> for building material the omission of river gravel extraction from the Tedjen river would be understood as a contribution to impact mitigation. An alternative approach to this would be to carry out an environmental impact assessment or other kind of thorough investigation specifically considering the ecological potential of the possible area of influence and the consequences of further material extraction at this site.

As a first step to <u>avoid or reduce transport-related annoyances</u> for local residents it should be considered to what extent the existing <u>railway transport</u> can be integrated into the material transport plan. Especially in the case of Dushak, where all processing facilities exist in the site, this option should be considered in earnest.

If transport through the village cannot be avoided in the case of Serakhs, roads shall be periodically watered. The use of covered trucks will mitigate dust development. In both cases a well designed traffic management plan should consider traffic safety and make statements on working hours for material transport. Again a contractor's method statement on material handling and transportation should be sought for approval.

<u>Local people should be informed</u> of construction works to be carried out in advance of their start in order to allay fears and complaints.

3.4 <u>Proposals for additional environmental enhancement</u>

Sand drift control

Sand drift is not a general problem on the project road, but a typical one in the sections between km 81 - km 94 and km 99 - km 103. As can be seen on pictures 3 and 4 dunes have moved on to the shoulders of the road in several locations. According to locally obtained information sand is frequently blown onto the carriageway in these sections. This circumstance could represent a safety risk for road users, especially since the average travelling speed is expected to increase with the improvements to the road.

In order to alleviate this potential safety risk, methods to prevent sand drift should be applied locally. An example for a simple and successful local practice of sand drift control is shown in picture 4a. This method is based on the use of rushes (local term: *Kamish*) which are easily available from the nearby irrigation and drainage channels. Cuttings with a length of about 0.6 m are stuck into the sand to about half of their length in dense single rows and in pattern similar to a fence or a net.

According to LEU-staff the average life span of these arrangements is 5 to 10 years and the efficiency is well acknowledged. It is recommended to include a

plan for the local application of this method, especially in those sections, where the dunes reach to the edges of the road (i.e. km 87 - 88 and km 92 - 94).

Tree planting

As mentioned before, many sections of the M 37 are already lined by younger and mature rows of planted trees. Additionally, a large-scale tree-planting campaign is currently carried out along all of the M 37 between Tedjen and Mary.

According to a Presidential Decree (see point 2.1) further tree planting is planned for on the remaining road section in the longer terms. Given that context it is felt that the present project should take up this concept and make tree planting an integral part of the planning. Actually, the Ministry of Environment stated that the project would be deemed 'incomplete' without this element of tree planting.

Details on suitable sections of the M 37 that should be preferably selected for those measures were discussed with representatives of the Forestry Department of the above Ministry. As was mentioned before, intensive planting is presently going on in so many sections of the road, that presently an inventory of the status quo would be useless. Accordingly, it is suggested that a record of missing sections be carried out on completion of construction operations in order to identify those sections, that shall be completed within the project. At the same time this process would allow for the replacement of construction-related damage or loss of trees which could not be avoided. Moreover, this record shall make statements on the availability of water from the existing channels since regular irrigation of new plantations is a prerequisite for successful growth. The schedule for the inventory and the tree-plantations shall also consider that planting shall be carried out as soon as possible after completion of construction operations of a particular section. Planting itself would be limited to the time between December and 15 March.

The planting programme shall exclude the sections between km 75 and 116 where emphasis is put on the preservation of the existing natural vegetation that is especially adapted to the sandy underground and the given natural growing conditions.

Apart from the road-side itself, further suitable locations for tree planting would be around the 25 bus stops that are located on both sides of the road between Tedjen and Hauz-Khan (km 0.65 and 69.8) and the road-side bazar at about km 10.0 (left). This option was proposed to representatives of the Ministry of

Environment and the Chief of the Road Maintenance Department (LEU) of Turmenautoellari in Ashgabad and highly appreciated by all. As for the other tree plantations, the availability of water for irrigation shall be carefully considered at each individual site.

The actual design of the present bus stop facilities only provides some shade during a few hours of the day. Tree plantations would improve on that situation, even though it would take some years before the planted trees would become effective in that regard. Some of the bus stop facilities are in a poor technical condition and may need replacement in the near future. In this case proper timing of the two measures shall be considered.

4. Recommendations for the preparation of tender documents

Based on the findings according to point 3, the following contains elements of guidelines that should be included in the tender documents or added to construction contracts. This shall ensure that environmentally sound construction practices are followed and adverse impacts avoided or mitigated. In addition to this, all regulations that are stated in tables 1 - 4 (appendix 2) shall be applied during all stages of the project.

4.1 <u>Establishment, setup and operation of the work site (= contractor's yard)</u>

Site selection contractor's yard

The contractor shall submit documents for approval (short statement and site plan in appropriate scale) which indicate

the location of the site(s)
the surface area required (incl. access)
the actual characteristics of the proposed site(s) with respect to soil and
groundwater conditions, drinking water intakes, irrigation channels, actual
land use, adjoining land uses, distance to settlements, existing vegetation
(by quality and quantity)

The documents shall give evidence that environmental impacts that might be related to the site selection (see point 3.1) have been perceived and will be avoided or at least mitigated.

Site preparation

The contractor shall indicate efforts to maintain / protect vegetation within the selected site (trees or bushes) and consider the removal and storage of topsoil as well as the proposed location for topsoil storage. Also, the contractor's site installation shall be bordered by a fence or other means.

The contractor shall provide details on his site installation and indicate the number of workers to be employed, the time period of employment as well as the proposed mode of accommodation. This shall also include information on the treatment of sewerage and waste. Also, the contractor shall provide a recovery system for used motor oil. Prior to the commencement of works the site installations shall be inspected for approval.

Work site operation

Prior to the commencement of works, the work site personnel shall be instructed in site on safety rules for the handling and storage of hazardous substances (fuel, oil, lubricants, bitumen, paint etc.) and also the cleaning of equipment. In preparation of this the contractor shall establish a short list of materials to be used (by quality and quantity) and provide a rough concept explaining the training / briefing that shall be provided for the construction personnel.

Work site restoration

Upon completion of works the contractor shall execute all work necessary to restore the sites to their original state (removal and proper disposal of all materials, wastes, installations, ground surface, spreading and levelling of stored top soil). Prior to official delivery / acceptance an inspector shall prepare a report confirming that such site restoration has been completed (see sub-chapter 4.8).

4.2 <u>Construction (= road corridor and adjacent land)</u>

The contractor shall ensure, that clearing is limited to surfaces absolutely necessary for the road project and preserve and protect, as far as possible, trees within or in the vicinity of the construction corridor. This will be of special importance in the section chainage km 75 to 116. Here, the works shall be strictly limited to the existing road corridor in order to prevent damage or destruction of the natural vegetation (especially *Haloxylon parsicum*).

Where the use of neighbouring lands for traffic diversion or working activities cannot be avoided all top soil shall be carefully stripped and stored for re-use.

Wherever possible, recycling of material shall be considered (would apply to the reuse of asphalt or surplus material) to be built into the subbase where it is renewed.

Also, a well designed traffic management plan for both construction vehicles and (potentially) diverted traffic shall be established.

Site Restoration

All land that that has been temporarily used shall be restored to the previous state on completion of works, including reuse of stored topsoil.

4.3 Borrow pits: site preparation and material extraction

The contractor shall remove and properly store topsoil. During mining operation the exposure of groundwater shall be avoided. In order to make revegetation possible top soil shall be spread over temporarily used area.

The contractor shall prepare a recultivation plan which indicates the location to be used for material extraction and the kind of measures to be taken in that area after completion of mining operations.

4.4 <u>Transport traffic</u>

The contractor shall prepare a transport management plan which indicates the proposed haul routes (preferably by using a map of suitable scale) and also propose measures for road safety (temporary measures during construction, information, warnings). He shall make indications on the proposed working hours which shall consider the mitigation of disturbances for the local residents (restrict hours of operation, e.g. no night-time or weekend working). Locations that would require temporary watering of transport roads shall be indicated. Also, the use of covered trucks shall be considered in this context in order to avoid spillage of material.

In order to allay fears and complaints of local people project signboards shall be installed, to inform on construction works to be carried out in advance of their start.

4.5 <u>Tree planting</u>

The Turkmen standard for road-side plantations is considered to be 2 or 4 rows of trees with 3 plants every 6 metres. In order to prepare the planting measures the following steps shall be carried out on completion of construction works or as works are progressing:

Mapping of remaining gaps for tree plantations along the M 37 (km 0 - 74
and 116 - 143) and soil conditions (especially the degree of salination
since this would influence the planting scheme (see fig. 1).
Determination of necessary earthworks for the preparation of tree planting
(by quality and quantity)
Determination of sections where existing trees were destroyed during
construction
Evaluation of 25 bus stops between Tedjen and Hauz Khan and road side
bazar at km 10.0 (left) with regard to suitability for tree planting (see fig.
2)
Evaluation of local availability of irrigation water from near-by channels
Prepare data on the necessary measures for irrigation (e.g. amount of
earthworks)
Determination of necessary planting material (by quantity and quality)
Preparation of a time table for implementation

Provided that watering can be assured by local irrigation facilities the following species should be considered for planting along the road, around the bus stops or at the bazar:

Ailanthus altissima

Maclura aurantica

Eleagnus angustifolia

Morus alba / nigra

Fraxinus pennsylvatica

Ulmus pinato-racemosa.

Where soils are sandy the most suitable species would be the local Sakxaul or Haloxylon parsicum.

Where high salt concentrations prevail soil preparation will have to include two cycles of thorough earth "rinsing" prior to planting. Planting itself shall be carried out between December and mid March. Trees would be available in sufficient numbers from the Forestry Department's own tree nurseries.

According to information from the Forestry Department maintenance requirements in the first 5 years would be watering 5 to 10 times per year and manual soil treatment twice to five times per year. In this way 80% success can be expected.

Tree planting itself is usually carried out jointly by the Ministry of Environment (Forest Dept.) and Turkmenautoellari (LEU = Maintenance Dept.). Since these two institutions actually dispose of the best practical experience in this field, they should be consulted to advise on assignments of local specialists to carry out the measures as described above.

4.6 Sand drift control

The contract shall include all necessary sand drift control measures in the road section between km 87 to 88 and 91 to 94. Preferably the method that was described before shall be applied, also including the plantation of *Haloxylon parsicum* within the Kamish-rows (see Figure 3).

The contractor shall work closely together with Turkmenautoellary's LEO from Mary or the Ministry of Environment (Forest department) who have the necessary practical experience.

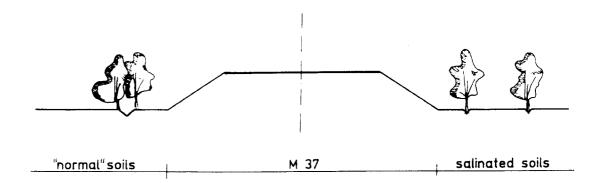


Figure 1: Comparison of recommended planting schemes according to different soil conditions

Figure 2: Tree planting at bus stop

4.7 Road safety

A smoother road surface itself will have a positive effect on road safety in general. Further improvements are expected from appropriate road marking (white lining according to GOST 13508-74, standard for road marking, preferably using detergent-free products) and guard rails where the embankments exceed 2 or 3 m height (to be determined individually). For the bridges appropriate safety equipment shall be provided (hand rails etc.).

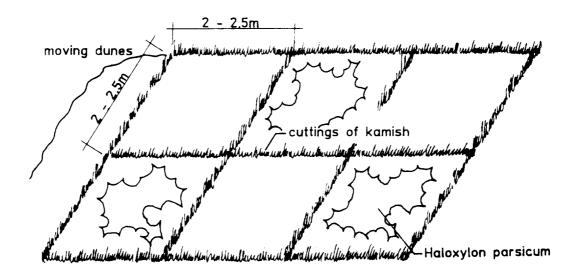


Fig. 3: Sand drift control - method as recommended by the Forest Department

4.8 Monitoring

In order to ensure the correct preparation and implementation of all remedial and mitigation measures an inspector shall be designated under the Project. This inspector shall supervise site preparation, site installation, worker's training / briefing, construction, advise on the design and the execution of measures for sand drift control, advise on and supervise site restoration (contractor's yard, construction sites, quarries). Also, tree planting shall be monitored.

A regular (monthly?) report shall be submitted by the inspector summarizing information on environmental improvements / measures during the construction period:

steps taken by the contractor to preserve the environment
data on quarries (safeguards, area, depth, recultivation, regular update of
characteristics)
trees planted (location, number, state of irrigation facilities etc.)

This inspector shall report to the Resident Engineer and cooperate closely with the appropriate official bodies.

5. <u>Key permits</u>

According to the existing planning regulations, permits / approvals would be required from the following institutions (this list is a complete one and is not restricted to purely environmental aspects):

Velayat Ahal

Etraps / Hekimliks (Dept. for Architecture)

Kahka borrow pit license Dushak Serakhs borrow pit license Serakhs

Tedjen road construction corridor, also including contractor's yard,

traffic diversion: Dept. of Land Use

Velayat Mary

Etraps / Hekimliks (Dept. for Architecture)

Mary road construction corridor, also including contractor's yard, tree planting along road and creation of irrigation facilities

Murgab road construction corridor, also including contractor's yard, tree planting along road and creation of irrigation facilities

Niasov road construction corridor, also including contractor's yard, tree planting along road / police post Hauz Khan and creation of irrigation facilities

Ministries:

Railway any change on railways

Construction Material borrow pits Dushak and Serakhs

Economy & Finance ???
Agriculture & Food ???

Water Management & Irrigation Borrow pit Dushak and Serakhs (on the

river Tedjen); water suppliers

Velayats:

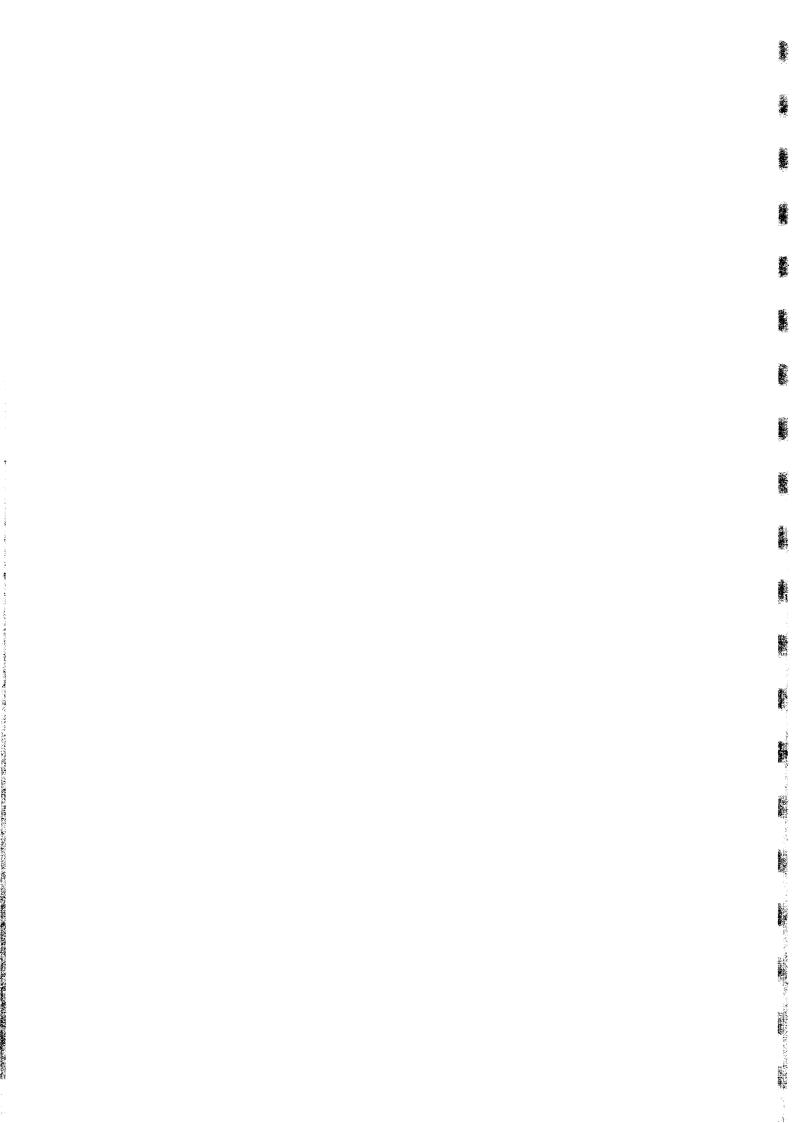
Dept. of Oil & Gas crossing of gas pipelines

Dept. of Energy & Industry crossing of energy lines

Dept. of Communication crossing of telecommunication lines

Etraps:

Dept. for Irrigation: crossing of water pipelines. In cases of


changes on water pipelines: technical

specifications

Gas stations Hauz Khan

Manager Tree planting on gas station

APPENDIX 1: List of people contacted

Almuradov, Mamed LEU Ahal, Chief of Maintenance Department

Atamuradov, Begensh Ministry of Nature Exploitation and Environment

Forestry Department

Baliyev, Sihmurat LEU Ahal, DCU 10 Serakhs

Berkeliev, Timur Ashgabad Ecology Club CATENA

Brozda, Olga Turkmendorproyekt, Director

Danielowa, Ludmilla Ministry of Environment

Senior Expert for Ecological Expertises

Glasovski, Vladimir Ministry for Nature Exploitation and Environment

Head of Department for Environmental Protection

Kuliyev, Akmukhamed Ministry of Nature Exploitation and Environment

Deputy minister-chief forester

Mirgorodski, Leonid Turkmendorproyekt, Senior Engineer

APPENDIX 2: Tabular Summary Potential Impacts, Measures And Regulations

Table 1: Establishment, setup and operation of the work site - potential impacts, measures and regulations

Potential Impact	Measures	Regulations
Loss of or damage to roadside trees and bushes	 preserve / protect single trees and bushes within or adjacent to the work site 	BCH 8-89 no. 2.3.4 - 2.3.7
Loss of valuable topsoil	remove and store topsoil	SNIP 2.05.02-85, no. 3.4 and 3.5
Pollution of soils, surface and ground waters	 avoid water protection zones and surface waters, restrict activities in areas near to rivers or streams / irrigation facilities 	BCH 8-89, no. 2.2.5, 2.2.9, 2.2.10;BCH 8-89 no. 2.4.11
	 proper storage, use a. handling of hazardous materials (detergents, lubricants, fuel, oil, paint) 	Safety Regulations for Construction, Rehabilitation and Maintenance of
	 designate inspector for the supervision of all measures and activities, define clear responsibilities 	Roads (corresp. to SNIP III A-11-70) Chapter 11; BCH 8-89 no. 2.2.1, 2.2.4, 2.2.5; SNIP III-4-80
	 temporary sealing of contractor's yard (storage area of machines, filling and washing sites, workshop, storage areas for hazardous substances), installation of oil-fuel separator 	-
	 proper treatment of sewerage and waste from worker's accomodation 	(BCH 8-89 no. 2.2.1 and 2.2.4)
	 raise awareness of workers and other personnel on use and handling of hazardous materials by on- site training / briefing 	ŀ
	 on completion of works: restore site (work areas, work depots and material storage site) to initial state; respread top-soil remove machines and waste material 	ł j
	 define clear responsibilities, monitor compliance by inspector or construction supervision team 	. 1
Noise development	use machinery corresponding to existing noise regulations	BCH 8-89 no. 2.4.2
•	 work site establishment to avoid neighbourhood of settlements 	
Dust development	adopt dust control measures	BCH 8-89 no.4.1.1 (applies to roads within settlements)
Traffic disruption and worker's safety	 develop well designed traffic management plan 	
Risk for worker's health and	 apply and supervize safety regulations for road works 	Safety Regulations for Construction, Rehabilitation a. Maintenance of
		Roads (corresp. to SNIP III A-11-70) Chapters 1, 2,11, 17; SNIP III 4-80 no. 2

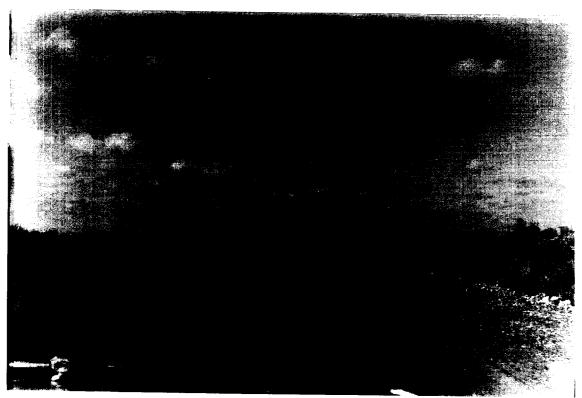
Measures in bold are mandatory due to existing regulations; (...) recommended measures only partly covered by existing regulations -.- indicates additional recommended measures Note:

Table 2: Activities within the construction corridor - potential impacts, measures and regulations

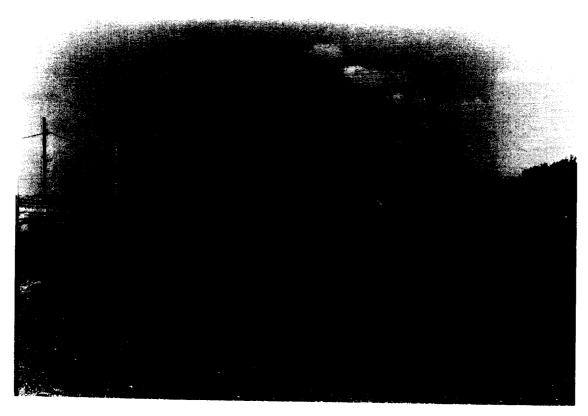
Potential Impact	Measures	Regulations
Risk for worker's health and safety	 apply and supervize safety regulations for road works 	Safety Regulations for Construction, Rehabilitation and Maintenance of Roads (corresponds to SNIP III A-
	 in case of works on bridges and culverts apply and supervize specific regulations develop well designed traffic management plan 	11-70) Chapters 2, 9, 11; see above, Chapter 6 (SNIP III-4-80 no. 2.20)
Destruction of roadside trees	 preserve / protect trees within or adjacent to the construction corridor 	BCH 8-89 no. 2.3.4 - 2.3.7
Surface water pollution	 respect protection zones along streams and rivers 	BCH 8-89 no. 2.2
Noise development	 use machinery corresponding to existing noise regulations 	BCH 8-89 Annex 2
	 limit working hours 	, i
Dust development	adopt dust control measures	BCH 8-89 no. 4.1.1
Worker's health	 apply health and safety regulations for road construction equipment 	BCH 8-89 no. 2.4 and Annex 2;
Generation of waste from road rehabilitation	 reuse material whereever possible 	
Traffic disruption	 develop well designed traffic management plan 	ı
For better control of measures	 contractor to provide a method statement 	1,1
Additional environmental enhancement measures	tree-plantingsand drift control	

Table 3: Material extraction and transport - potential impacts, measures and regulations

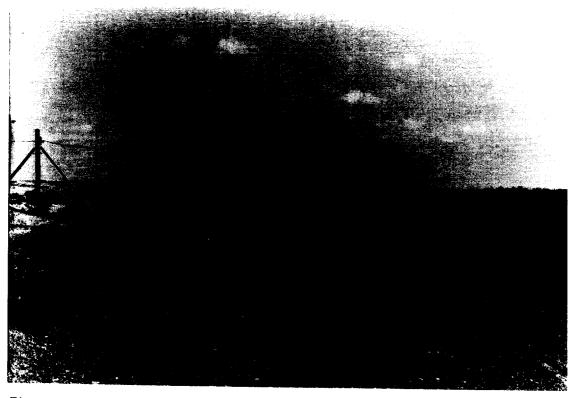
Potential Impact	Measures	Regulations
Disturbances of local residents through material transport (noise, dust)	 consider possibility of material transport by railway inform local people about project (responsibilities, purpose, duration) 	· ·
	apply measures for dust control	(BCH 8-89 Nr. 3.4), no. 4.1.1
loss of valuable topsoil	 remove and store topsoil 	SNIP 2.05.02-85 no. 3.4 and 3.5
safety risks because of material transport through settlements	develop of well designed traffic management plan	(SNIP III-4-80), no. 2.20)
risk for worker's health and safety	 apply and supervize safety regulations for works in quarries and borrow pits 	Safety Regulations for Construction Rehabilitation and Maintenance of Roads (corresponds to SNIP III A-11-70) Chapter 12


Table 4: Further opportunities for positive environmental enhancement

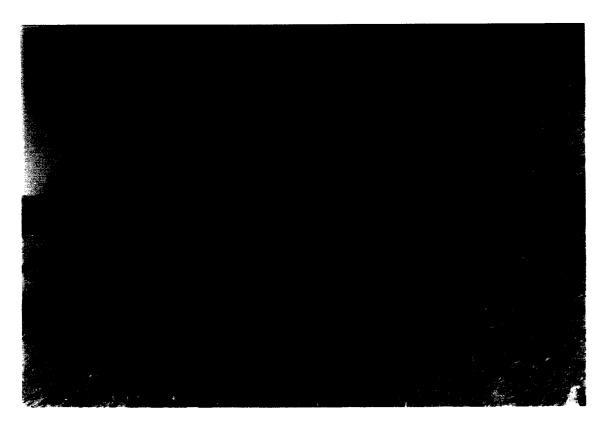
Aim	Measures	Regulations
Improvement of road safety	 white linings (preferably using environmentally friendly products) crash barriers in road sections with embankments > 3m height 	GOST 13508-74
	sand drift control	GOST
Tree-planting	mapping of remaining gaps for tree planting	;
	 determination of necessary earth works 	
	determination of number of trees destroyed during construction	
	 evaluation of bus stops for suitability of tree planting 	
	 evaluation of existing irrigation conditions 	
	 prepare data on measures required for tree irrigation 	
	 determination of quantity and quality of planting material 	



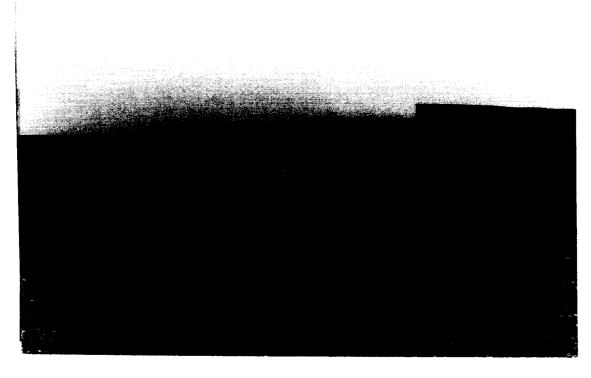
Picture 1: Road section between Tedjen and Hauz Khan (~km 33), where road sides are currently being prepared for tree planting



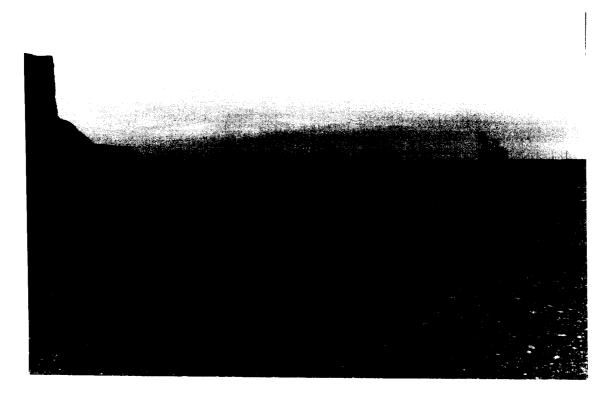
Picture 2: Typical aspect of natural vegetation between at about road km 98 where Sakxaul (*Haloxylon parsicum*) reaches up to the edges of the shoulders



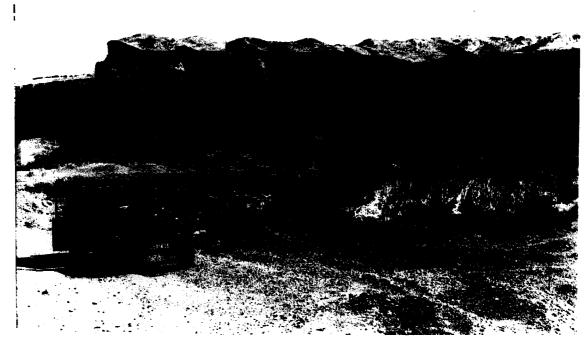
Picture 3: Moving sand dunes between road km 88 ad 91,5. In these locations measures for sand drift control are recommended



Picture 4: see above



Picture 4a: Proposed method for sand drift control with Kamish



Picture 5: Proposed borrow pit at Dushak, aspect of the present borrow site

Picture 6: Same borrow pit, view over some older parts of the borrow area

			4

Picture 7: Borrow pit at Serakhs ('Khor Khor') with aspects of spontaneous growth of rushes in local depressions

Picture 8: Apect of some older parts of the same borrow pit with wide-spread waste in the background. The water at this location originates from a nearby factory for loam bricks

